

DEVELOPMENT AND EVALUATION OF
POSITIONING SYSTEMS FOR AUTONOMOUS

VEHICLE NAVIGATION

By

ROMMEL E. MANDAPAT

A THESIS PRESENTED TO THE GRADUATE SCHOOL

OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT OF
THE REQUIREMENTS FOR THE DEGREE OF

MASTER OF SCIENCE

UNIVERSITY OF FLORIDA

2001

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
2001 2. REPORT TYPE

3. DATES COVERED
 00-00-2001 to 00-00-2001

4. TITLE AND SUBTITLE
Development and Evaluation of Positioning Systems for Autonomous
Vehicle Navigation

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Center for Intelligent Machines and Robotics,Department of Mechanical
Engineering,University of Florida,Gainesville,FL,32611

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES
The original document contains color images.

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT

18. NUMBER
OF PAGES

276

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

 ii

ACKNOWLEDGMENTS

 The author would like to express his deepest gratitude to the members of his

supervisory committee, Dr. Carl Crane III, Dr. Joseph Duffy and Dr. Paul Mason for their

leadership and guidance and for the opportunity to participate and contribute to an

exceptional graduate program.

 Special thanks go to David Armstrong, Dave Novick and Jeff Wit for their active

participation and continuous help in the development of this research project. Thanks

also go out to the people of CIMAR, most notably those directly involved in the

autonomous vehicle project for their help, suggestions, and friendship.

 The author would also like to recognize the continued support and funding given

by Wright Research Laboratory at Tyndall Air Force Base in Panama City, Florida as

well as the individual contributions of their staff to this project.

 Sincerest thanks go out to the author’s parents, Gil and Cecilia Mandapat for their

undying support and encouragement.

 Finally, the author wishes to send out his most heartfelt gratitude and love to his

wife, Eia, for supporting and inspiring him to make the most out of this opportunity.

 iii

TABLE OF CONTENTS

page

ACKNOWLEDGMENTS …………………………………………………………….. ii

ABSTRACT …………………………………………………………………………… vii

INTRODUCTION ……………………………………………………………………... 1

 Project Background ………………………………………………………………… 1
 Current NTV Technology ………………………………………………………….. 5
 Navigation Processes ………………………………………………………….. 6
 Modular Architecture eXperimental (MAX) ………………………………….. 8
 Current CIMAR Research ……………………………………………………….... 11
 Thesis Focus ………………………………………………………………………. 12

RELATED RESEARCH ………………………………………………………………. 14

 Types of Positioning Systems ……………………………………………………... 14
 Dead Reckoning Type System ……………………………………………….. 14
 Active Beacon Type System ……………………………………………….…. 15
 Inertial Measurement Unit ……………………………………………………. 16
 Global Positioning System …………………………………………………… 20
 Integrated Inertial Navigation System / Global Positioning System ………….. 25
 Types of Vehicle Applications ……………………………………………………. 27
 Indoor Vehicles ………………………………………………………………. 27
 Outdoor Vehicles …………………………………………………………….. 28
 Military Applications ………………………………………………………… 31

MAPS / ASHTECH GPS POSITIONING SYSTEM ………………………………….. 33

 Overall System Description ……………………………………………………….. 33
 Honeywell MAPS ………………………………………………………………… 34
 System Specifications and Features ……...…………………………………... 34
 System Components ….………………………………………………………. 34
 Commands and Messages …………………………………………………… 41
 Modes of Operation ………………………………………………………….. 44
 Ashtech Z-12 GPS ……………………………………………………………….. 45
 System Specifications ……………………………………………………….. 45
 System Features ……………………………………………………………... 45

 iv

 Message Sets ……………………………………………………………………... 46
 System Integration ………………………………………………………………... 47
 System Configuration ………………………………………………………... 47
 Communications Interface …………………………………………………… 50
 System Control ……………………………………………………………….. 50
 Kalman Filter Design and Implementation ………………………………… 51
 Timing ……………………………………………………………………….. 51
 System Performance ……………………………………………………………… 52
 Testing Under Ideal Conditions …………………………………………… 53
 Testing Under Adverse Conditions ………………………………………….. 55
 Temporary Loss of GPS …………………………………………………. 55
 Complete Loss of GPS …………………………………………………... 55

NOVATEL BEELINE …………………………………………………………………. 58

 Installation and Set-Up ………………………………………………………….… 59
 GPS Antennas ……………………………………………………………….. 59
 Beeline Shelf ………………………………………………………………… 60
 Base Station …………………………………………………………………. 61
 Testing Procedures ……………………………………………………………….. 63
 Alignment Test ………………………………………………………………. 63
 Accuracy Test ………………………………………………………………… 64
 Recovery Test ………………………………………………………………… 64
 Calculations, Data Recording, and Post-Processing ………………………………. 64
 Test Results ……………………………………………………………………….. 68
 Static Align Test ……………………………………………………………… 68
 Dynamic Align Test ………………………………………………………….. 72
 Static Accuracy Test …………………………………………………………. 76
 Dynamic Accuracy Test ……………………………………………………… 77
 Recovery Test ………………………………………………………………... 80
 Analysis …………………………………………………………………………… 84

HONEYWELL HG1700AG11 IMU / NOVATEL RT20 GPS
POSITIONING SYSTEM ………………………………..…………………………… 88

 Overall System Description ……………………………………………………….. 88
 Honeywell IMU …………………………………………………………………… 89
 System Specifications and Features …………………………………………... 90
 Input Power Requirements …………………………………………………… 91
 Sensor Axes and Mounting …………………………………………………… 93
 Serial Communications Interface ………………………………………………….. 95
 SDLC Type Protocol Messages ……………………………………………… 95
 Sealevel ACB-104 Serial Communications Card ……………………………. 98
 IMU Data Processor (IDP) ……………………………………………………..… 100
 Raw Data Conversion ………………………………………………………. 100

 v

 Error Checking ………………………………………………………………. 102
 Data Averaging ……………………………………………………………… 103
 IMU Output Message ……………………………………………………….. 103
 Novatel RT-20 GPS ……………………………………………………………… 104
 System Specifications ………………………………………………………. 105
 System Features …………………………………………………………….. 107
 Message Sets ………………………………………………………………... 108
 System Integration ……………………………………………………………….. 110
 System Configuration ……………………………………………………….. 111
 Hardware ……………………………………………………………….. 112
 Software ………………………………………………………………... 115
 POS Main Processor (PMP) ……………………………………………….... 117
 IMU Calibration …………………………………………………………….. 118
 Sources of Error ………………………………………………………… 118
 Geodetic Constants ……………………………………………………... 121
 Coordinate Systems ………………………………………………...…… 122
 Coordinate Rotation Matrices ……………………………………….... .. 125
 Coordinate Axes Rotation ……………………………………………… 126
 Steps ……………………………………………………………………. 127
 Alignment …………………………………………………………………… 130
 Static Condition Determination ………………………………………... 132
 Analytical Coarse Alignment …………………………………………... 133
 Fine Alignment ………………………. ……………………………….. 136
 Navigation Solution …………………………………………………………. 144
 DGPS Aiding and Extended Kalman Filter …………………………………. 152
 Timing ………………………………………………………………………. 159
 System Performance ……………………………………………………………... 159
 IMU Alignment ……………………………………………………………... 160
 IMU Navigation ………………………………………………………….…. 160
 Using Simulated GPS Position ……………………………………………… 166
 Under Ideal Conditions ….……………………………………………… 166
 Static Test Using Reference GPS Position …………………………. 167
 Static Test Using Tuned KF …………………………….…….….… 168
 Static Test Using KF Updates To Reset IMU Navigation ……..….… 169
 Under Adverse Conditions ……………….…………………………….. 170
 Temporary GPS Loss …………………………………….………… 171
 Using Actual GPS Posit ion ………………………………………………….. 174
 Dynamic Tests ………………………………………………………….. 174
 Pure Translation ……………………………………………………. 174
 Pure Rotation …………………………………………………...….. 179
 Combined Translation and Rotation ……………………………..… 182

 vi

FUTURE WORK ……………………………………………………………………. 192

 Optimization of Beeline System Configuration …………………………………. 192
 IMU/GPS Positioning System ……………….……….…………………………. 193
 Solidifying IMU Data Serial Interface ………………….…………………… 193
 Implementing Fine Alignment ………………….…………………………… 194
 Optimization of External Kalman Filter ……….……………………………. 194
 Redesigning Hardware Configuration ……………………………………….. 195
 Using Novatel RT-2 GPS Receiver …….………………………………….... 195
 Evaluating Other Components ………………………………………………. 196
 Novatel Black Diamond System …………………………………………….. 197

APPENDIX A SUPPLEMENTAL MATHEMATICAL EQUATIONS ..…………. 200

APPENDIX B HONEYWELL HG1700AG11 SCHEMATIC DRAWINGS ……… 201

APPENDIX C COMPUTER CODE …………………………………………….…. 204

LIST OF REFERENCES ……………………………………………………………. 265

BIOGRAPHICAL SKETCH ………………………………………………………… 268

 vii

Abstract of Thesis Presented to the Graduate School
of the University of Florida in Partial Fulfillment of the

Requirements for the Degree of Master of Science

DEVELOPMENT AND EVALUATION OF POSITIONING SYSTEMS
OR AUTONOMOUS VEHICLE NAVIGATION

By

 Rommel E. Mandapat

December 2001

Chairperson of the Supervisory Committee: Professor Carl D. Crane III

Major Department : Mechanical Engineering

 Successful navigation of an autonomous vehicle is made possible by accurately

measuring real-time position and orientation. Positioning systems should provide fast,

accurate and reliable operation through varying conditions.

 The current positioning system being used on Center for Intelligent Machines And

Robotics’ (CIMAR) Navigation Test Vehicle (NTV) consists of an Inertial Navigation

System (INS) and Global Positioning System (GPS) integrated through an external Kalman

Filter (KF). The INS component is a Honeywell H-726 Modular Azimuth Positioning

System (MAPS) and the GPS component is an Ashtech Z-12 Differential GPS. The high

data rate of the INS directly complements the high accuracy of the GPS. System

performance shows sustained positional accuracy of less than ten centimeters at output data

rates of up to 10 Hz. The high system cost, however, limits its versatility in application.

The focus of this thesis is to explore two alternative low-cost positioning systems.

 viii

 A second positioning system is the Novatel Beeline GPS, which consists of dual

antennas to measure both vehicle position and dual-axis orientation. The drawbacks of the

system are inherent to GPS, including satellite visibility at all times and slow recovery after

data loss. This stand-alone system features position data to within 20 centimeters at data

rates up to 5 Hz.

 A third system is a low-cost INS/GPS integrated positioning system. It makes use

of a Honeywell HG1700AG11 Inertial Measurement Unit (IMU) and a Novatel RT-20

Differential GPS. Raw acceleration and angular velocity data at 100 Hz from the IMU is

averaged down to 12.5 Hz for processing by the Navigation Processor. The Navigation

Processor performs a two-stage alignment to determine the IMU’s initia l orientation angles.

The second alignment stage uses a Kalman Filter (KF) to reduce platform tilt errors. Once

aligned, data is used to plot out a navigation solution to provide position, velocity and

orientation. To reduce inherent IMU drift, integration with the GPS is done through a

secondary KF, which overcomes GPS data loss and rejects DGPS data with an error over 1

meter. Under ideal conditions, overall system performance is expected to reach twenty-

centimeter positional accuracy at 12.5 Hz.

 The performance of these three systems are evaluated and compared using the

similar test set-ups, simulating ideal and adverse operating conditions. Overall, the

MAPS/GPS shows a slower drift rate and better recovery time. However, the IMU/GPS

compares favorably in that its adequate performance and low cost makes it ideal for

autonomous ground vehicle navigation.

1

CHAPTER 1
INTRODUCTION

Project Background

 In 1991, the Air Force Research Laboratory (AFRL) at Tyndall Air Force Base,

initiated a program dealing with autonomous vehicle systems that could be applied to a variety

of Air Force needs

 Autonomous navigation is the focus of work conducted at the University of Florida’s

Center for Intelligent Machines and Robotics (CIMAR). The navigation task can be further

subdivided into sub-tasks including vehicle control, path planning, vehicle positioning, path

following, and obstacle avoidance.

 In order to accomplish these tasks, CIMAR developed its own Navigation Test Vehicle

(NTV, see Figure 1.1), a retrofitted Kawasaki MULE 500. Initially, the NTV was equipped

with a VME computer running under the VxWorks operating system. To have closed-loop

control over the NTV’s functions, actuators and encoders have been integrated into the

steering, throttle, brake and shifter mechanisms. Once fully developed and tested on the NTV,

the technology is transferred to other Air Force systems.

One application of the autonomous vehicle technologies was the cleanup of various

DOD facilities from unexploded ordnance (UXO). Autonomous vehicle operation removes

human operator hazards and ensures high site search efficiency.

 2

Figure 1.1: Navigation Test Vehicle Kawasaki Mule 500

 The cleanup of buried munitions requires two steps, survey and cleanup. The survey

involves sweeping 100% of the area using an Autonomous Survey Vehicle (ASV). The ASV is

a modified John Deere Gator (shown in Figure 1.2) towing a sensor package composed of a

magnetometer array and a ground penetrating radar array. As the ASV navigates, it collects

and stores time-tagged position and sensor data. This data is then post-processed to determine

the locations of possible UXO. After the survey step, the cleanup involves removal of buried

ordnance. This is accomplished by an autonomous John Deere excavator shown in Figure 1.3.

As part of a mission to clear a 50 x 50 yard beachhead area of mines and other

obstructions, a D7G bulldozer (see Figure 1.4) outfitted with a mine plow was also automated

using NTV technology. This automated bulldozer’s job was to assist in the deployment of the

Marines and their supplies.

 3

Figure 1.2: Autonomous Survey Vehicle (John Deere Gator).

Figure 1.3: John Deere Excavator.

Figure 1.4: Joint Amphibious Mine Countermeasures D7G Dozer.

 The next generation of autonomous vehicles to utilize NTV technology is built on a

commercially-available vehicle built by ASV. The All-Purpose Remote Transport Vehicle

 4

(ARTS), shown in Figure 1.5 includes a front lift assembly and tele-remote package developed

by Applied Research Associates, Inc. (ARA). Another version has a manipulator arm with a

gripper on one side and a high-pressure waterjet attachment on the other. In October of 1999,

as part of a demonstration for the Joint Architecture for Unmanned Ground Systems (JAUGS),

the ARTS swept an area, dropping discs from its rear mine-laying simulating mechanism. The

NTV, towing the magnetometer and ground penetrating radar trailer, swept the same area

locating the discs for eventual clean-up. JAUGS is being developed by the Department of

Defense Joint Robotics Program.

 As part of the ongoing effort to standardize the interface of the autonomous ground

vehicle systems, the first vehicle to be fully JAUGS-compliant is the AMRADS (Autonomous

Mobility Research and Development System, see Figure 1.6). Its main purpose is similar to the

NTV in that it serves as a testbed for autonomous navigation systems applied on a tracked

ground vehicle. During a demonstration of cooperative vehicle systems in May of 2001, the

AMRADS performed perimeter surveillance while the NTV acted as a autonomous re-supply

vehicle as well as ambulance (see Figure 1.7).

Figure 1.5: All-Purpose Remote Transport (ARTS) Vehicle.

 5

Figure 1.6: Autonomous Mobility Research and Development System (AMRADS).

Figure 1.7: Cooperative Vehicle Demonstration (AFRL, May 2001).

Current NTV Technology

The Navigation Test Vehicle (NTV) has served as the test-bed for all the technology

developed for the autonomous vehicle project. There are currently seven graduate students and

two undergraduate students involved in developing systems to further the application and

successful implementation of autonomous ground vehicle navigation systems. Aside from

military use, the NTV has also been utilized to investigate automating a variety of applications

such as golf course grass mowing (Figure 1.2) and orange grove inspection (Figure 1.8).

 6

Figure 1.8: NTV Navigating Orange Grove.

Navigation Processes

Vehicle Control, an essential primary step, involves automating all vehicle operational

functions effectively switching them from manual to either remote operation or to a fully

autonomous mode. Currently, the NTV employs DC servo motors on both the steering and

throttle. An encoder accurately measures the steering angle. Linear actuators are used for the

brake and shifter.

The next navigational sub-task is Path Planning. There are 2 types of paths: Go To

Goal, and Sweep The Field. ‘Go To Goal’ involves efficiently driving from a starting location to

a goal location. This may either be done through the shortest path possible or through existing

roads previously mapped out. In ‘Sweep the Field’, the NTV picks four corner points

demarcating the field, and sweeps it insuring 100% coverage. An off-line path planner is used

to generate these paths [Ran94a]. When generating these paths, the off-line path planner takes

into account any known obstacle by representing them as polygons in an area map [Wit96].

The shortest path around all obstacles is calculated by using the A* search algorithm [Jar83].

 7

The next task is to accurately determine vehicle position. This will allow the vehicle to

effectively follow the planned path. The NTV’s current positioning system is an integrated

MAPS Inertial Navigation System / Global Positioning System (MAPS/GPS) capable of

providing high accuracy position, velocity and orientation data at high rates. The details of the

MAPS/GPS positioning system is discussed in detail in Chapter 3.

Once position has been established, the vehicle has to perform path following or path

tracking. This involves continually generating the vehicle’s desired speed and steering angle to

keep the vehicle on the desired path. By choosing the center of the vehicle’s rear axle as the

point to control, it has been shown that control of the vehicle’s speed and heading are

kinematically decoupled [Shi92]. The decoupling permits independent calculation of the desired

speed and steering angle. Vehicle speed is set at a constant three miles per hour (1.34 m/sec).

The desired steering angle is continuously recalculated geometrically by comparing the present

position of the vehicle to the planned path. The planned path consists of subgoals which the

vehicle constantly tries to reach. Once the vehicle is within a predetermined distance, it looks to

the next subgoal until it reaches the final goal [Ran94b].

And the last step in navigation involves obstacle avoidance. This is important in

adapting to unknown or changing conditions that are not indicated in the planned path. In order

to avoid obstacles along the path, the NTV must first detect them and then efficiently avoid

them. Current sensors used for obstacle avoidance on the NTV include a Polaroid ultrasonic

transducer array and a Sick Laser Range Detector (Figure 1.9). The ultrasonic sensors give

wider sensing coverage (180 degree lateral coverage and a 60 degree top to bottom on the

vehicle front side). The laser provides longer detection range (200 feet in ideal conditions).

 8

Once an obstacle is detected, the vehicle slows down and tries to safely steer around the

obstacle.

Figure 1.9: Polaroid Ultrasonic Transducer Array and Sick Laser Range Detector.

Modular Architecture eXperimental (MAX)

 In order to improve the versatility and functionality of the NTV, CIMAR designed a

modular system architecture that allows interchangability of the individual components. By

standardizing the interface between system components, the Modular Architecture eXperimental

(MAX) allows for rapid system reconfiguration. The modular structure of MAX is depicted in

Figure 1.10. The key of the MAX Architecture lies in the standard message sets defined for

each component. MAX shortens the system development time as individual components can

be built and tested using essentially the same NTV set-up. Furthermore, component hardware

design becomes non-vehicle specific, which gives increased design flexibility. Finally, an

important advantage of the modular architecture is the relative ease of adapting it to automate

other vehicles. In July of 1999, CIMAR and AFRL together with the companies Applied

 9

Research Associates and Wintec, used the MAX architecture to full advantage by automating

an ARTS in six weeks. This vehicle would have normally taken six months to automate.

 Implementation of MAX is further enhanced by standardizing system software.

Presently, all systems run C/C++ code using the Lynx Real Time Operating System. Systems

share libraries as well as the same software structure and architecture. Each system also utilizes

shared memory to allow software blocks to reuse essential data efficiently. The downsides to

the architecture include generally larger hardware space requirement and slightly higher overall

hardware cost. One of the immediate goals is to convert the NTV system software to run under

Red Hat Linux 7.0 Operating System. Also, a Message Routing System (MRS) has been

designed to optimize data handling within the different systems at every level. The MRS will

operate through an ethernet connection.

Figure 1.10: Current MAX System Structure.

 10

Currently, the Navigation Test Vehicle uses a gas engine for propulsion and a gas

generator to power all the electronic components in its rear cabinet, with an UPS as back-up.

A laptop allows one to monitor the system output and make changes on the fly. The NTV is

also capable of operating under Tele-remote operation and controlled through an Operator

Control Unit (OCU – Silicon Graphics workstation).

The NTV rear cabinet houses all the individual system shelves (see Figure 1.11). Each

shelf contains a fully independent system component which can be replaced without having to

modify the other system component settings.

On a larger scale, AFRL and CIMAR are involved in the development of a standard

approach in the design and specification of autonomous vehicles being developed by military

contractors and research groups. This DOD thrust is called the Joint Architecture for

Unmanned Ground Systems (JAUGS). Once fully developed and implemented, there will be

greater cooperation and advancement in the field of Autonomous Ground Vehicles (AGV).

Figure 1.11: NTV Rear Cabinet.

 11

Current CIMAR Research

 The main areas of research currently tackled at CIMAR include obstacle detection

mapping, backing with a trailer, the development of a portable operator control unit, the

coordinated control of multiple vehicle systems, the development of a beacon based positioning

system, and the integration of stereo vision sensing systems. In the Detection Mapping System,

a local grid map relative to the vehicle is built using obstacle sensor data. As the vehicle

navigates, the map is continuously updated thereby allowing it to traverse and avoid obstacles

efficiently. A vehicle control system is being developed to successfully drive the NTV with a

trailer in reverse. The trailer hitch provides closed-loop feedback control allowing the NTV to

follow a path in reverse accurately at relatively high speeds. The Portable Operator Control

Unit being developed will replace the current Silicon Graphics workstation set-up with a laptop

running under the Linux Operating System and will be able to control the NTV in full

autonomous or tele-remote operation mode.

 Among the recently started research efforts is the coordinated control of a multiple

vehicle system. The NTV acts as the main or “mother” vehicle with several smaller “child”

vehicles which may act as autonomous sensor units. These “child” vehicles (Figure 1.12), once

deployed, can form a sensor array covering a wider area of the field to be surveyed. This kind

of task division is perfectly suited for buried munitions detection. The data from the “child”

vehicles can be sent back to the “mother” unit through RF. Also, the “mother” vehicle knows its

absolute position while the “child” vehicles know its relative position to the “mother” vehicle.

Another type of beacon-based positioning system being explored uses laser light to track

specific markers laid out around the perimeter of the field.

 12

Figure 1.12: Eliminator (“Child” vehicle).

 And lastly, three-dimensional obstacle detection and mapping is the long-term objective

of the Detection and Mapping System. A stereovision camera system is to be integrated into

the system. Using dual cameras, exact 3-D geometry and location of obstacles can be

accurately measured and stored. Currently, a single Sony CCD camera is used to perform

edge following, allowing the NTV to navigate through a marked path.

Thesis Focus

 The current positioning system on the NTV integrates a Honeywell H-726 Modular

Azimuth Positioning System (MAPS) with an Ashtech Z-12 differential GPS through an external

Kalman Filter (KF). This system provides high accuracy position (less than 6-7 centimeter

error) and orientation (0.01 degree error) at high rates (12.5 Hz). However, the high cost of

the system ($150,000) has made it unsuitable for certain applications such as multiple vehicle

systems.

 The focus of this thesis is to investigate two lower-cost alternative positioning systems,

the Novatel Beeline RT-20 GPS and the Honeywell IMU / Novatel GPS integrated system.

 13

Each system is developed, integrated into the NTV, tested and benchmarked against the

MAPS-Pos system. Additional tests are performed using the AMRADS as the vehicle

platform. Finally, the suitability of each alternative system is discussed.

14

CHAPTER 2
RELATED RESEARCH

 The process of following a path on a map through predetermined latitudes and

longitudes is called navigation, and the process of pointing the vehicle to follow a chosen path is

called guidance [Law93]. Since a vehicle cannot effectively get to a desired location without

knowing its current as well as its past location, positioning systems have been essential

components in autonomous vehicle navigation.

Types of Positioning Systems

The type of positioning system defines the type of application it is most suited for.

There are two general types of positioning systems: dead reckoning systems and active beacon

systems.

Dead Reckoning Systems

 Dead reckoning involves continuously measuring the heading and distance traveled in

order to calculate position [Wit96]. Dead reckoning offers a low cost solution to vehicle

positioning. However, the main characteristic of this type of positioning system is that the

positional accuracy drifts or degrades over time. This is due to the inherent sensor error

characteristics which accumulate over time. A common example of a dead reckoning

instrument is an encoder which can be used to calculate the distance traveled by the vehicle

 15

wheels. And to calculate the vehicle orientation, heading sensors such as a compass can be

used together with the encoders.

 A more accurate and versatile dead reckoning instrument is the Inertial Measurement

Unit (IMU). An IMU is basically composed of three accelerometers and three gyroscopes

mounted on orthogonal axes. These will be discussed later in more detail.

Active Beacon Type Systems

Active Beacon systems use either radio frequency, ultrasonic or light sources to transmit

relative positioning between the vehicle and known reference points. The principle behind

calculating vehicle position lies in the concept of triangulation and trilateration. In triangulation, a

rotating receiver on the vehicle calculates its position relative to three or more field markers.

Using the angles between the vehicle’s longitudinal axis and each marker, the exact vehicle

position can be calculated. In trilateration, the distance between the vehicle receiver and the

markers are used instead. Some systems have the active beacon rotating on the vehicle while

the markers passively reflect the signal back to the vehicle.

The main advantage of an active beacon system is the positional accuracy does not drift

over time. The systems are also computational efficient requiring less processing power. The

disadvantage lies in the inflexibility to the changing survey environment since the field markers

have to be set in place and surveyed beforehand. Also the range of survey is limited to the area

bound by the field markers.

An example of a commercially available system is the Geodimeter 600 ATS (see Figure

2.1), which is typically used for land surveying vehicle positioning. The typical specifications are

listed in Table 2.1.

 16

Figure 2.1: Geodimeter 600 ATS System Set-Up .

 Table 2.1: Geodimeter 600 ATS System Specifications.

Parameter Specifications

Accuracy at constant speed (1 m/s at 300m)

Horizontal ±2 mm + 14 ppm

Vertical ±2 mm + 14 ppm

Slope distance ±2 mm + 14 ppm

Timing of data

Rate 1-6 Hz user definable ±1 ms (one meas, each 166 ms)

Latency 183 ms (incl. Radio modem)

Synchronization of measurement data <5 ms

Maximum Acceleration of Target on short distance
Radial acceleration 10 grads/s2, 9 deg/s2

Maximum Velocity of Target
Radial speed 25 grad/s, 23 deg/s
Axial speed 6 m/s

Inertial Measurement Unit

An Inertial Measurement Unit (IMU) is a group of inertial sensors (3 gyros and 3

acceleremoters) that measure vehicle orientation and acceleration. There are 2 types of IMUs,

the inertial platform (or gimbaled type) and the strapdown system.

 An Inertial Platform (Figure 2.2) uses gyros to maintain the accelerometers in a fixed

attitude, i.e., the gimbaled platform serves to define the directions for the measurements of

 17

acceleration. The platform is controlled by an electric torque motor. This together with the

gimbals, make the inertial platform mechanically complicated.

 To simplify the mechanical construction of the IMU, the strapdown system emerged.

The strapdown system (Figure 2.3) replaces the gimbals with a computer that simulates their

presence electronically. Here, the gyroscopes and accelerometers are rigidly connected to the

vehicle structure so that they move with the vehicle. They are mounted along mutually-

orthogonal axes, with the gyros measuring change in angle about the roll, pitch and yaw axes,

while the accelerometers measure accelerations along the roll, pitch and yaw axes. Unlike the

inertial platform, the strapdown gyros measure the angles turned, up to the maximum rotation

rate expected. Table 2.2 is a comparison of the gimbaled platform and strapdown type IMU

[Law93].

Figure 2.2: Gimbaled Platform Type IMU.

 18

Figure 2.3: Strapdown IMU.

 Table 2.2: Comparison of Gimbaled Platform versus Strapdown Type IMU.

Gimbaled Platform Strapdown

Advantages
1) they have lower errors than strapdown

systems
2) null gyro operation eliminates anisoinertia

and angular acceleration errors
3) they can operate with vehicle rotation rates

over 1000 deg/s
4) they self-align by gyrocompassing
5) they can calibrate the sensors by platform

rotations
6) gyro torquer errors do not leas to attitude

error

1) they are lighter, simpler and cheaper
2) they are easily configured for odd-shaped

spaces
3) they have high reliability due to no moving

parts

Disadvantages
1) they are mechanically complicated
2) they are larger and more expensive
3) they are less reliable than strapdown

systems

1) they have low maximum rate (400-600
deg/s)

2) they are difficult to align
3) the sensors cannot be easily calibrated so

must be stable
4) system rotation induces sensor errors
5) their accelerometer bias errors accumulate

 19

 The strapdown Inertial Measurement Unit is a raw sensor that outputs delta angles and

delta velocities. Such data is then passed to a Navigation Processor, which is essentially a

computer that calculates a dead-reckoning navigation solution with the use of navigation

equations run through a Kalman filter. The Navigation Processor then outputs the position and

orientation of the IMU, normally in local vehicle coordinates (latitude, longitude, altitude, roll,

pitch, yaw). An IMU with a navigation processor and support electronics is called an Inertial

Navigation System (INS). An example of this is the Honeywell H-726 MAPS.

 Eglin Air Force Base together with Charles Stark Draper Laboratory, has developed,

fabricated and tested the first three-axis microelectromechanical system (MEMs) ever

assembled utilizing three MEM gyros. Each of the hybrid MEM gyros is on a single printed

circuit board that is fixed to a conservative 5-in cube layout for maximum access and testability

[Bie99].

Efforts to build the Advanced Tactical Inertial Measurement Unit (ATIMU) are aimed

at developing a miniature (15 in3), extremely low-cost (less than $2000) tactical missile grade

IMU using innovative MEMs technology. This next generation IMU will have a gyroscope drift

rate performance requirement of 1 deg/h and an accelerometer bias stability of 300 ug [Bie99].

The Fiber Optic Gyro (FOG) IMU is a small (25 in3), low-cost (less than $6000)

tactical missile grade IMU using interferometric FOG technology and integrated silicon

accelerometers (ISA) [Bie99].

 The high data output rates of the IMU and INS make it ideal for fast navigation.

However, the inherent drift of the inertial sensors necessitate the aiding by GPS to maintain

accurate position and orientation at all times.

 20

Global Positioning System

 The Global Positioning System (GPS), maintained by the Department of Defense

consists of 24 geosynchronous satellites, or space vehicles (SVs) which orbit the earth. These

SVs transmit data on two microwave carrier signals, L1 frequency (1575.42 MHz) and L2

frequency (1227.60 MHz). The L1 carries navigation message and the Standard Positioning

System (SPS) code signals. The L2 carrier is used to measure ionospheric delay by Precise

Positioning System (PPS) equipped receivers. The SVs make up the space segment of GPS.

Figure 2.4: NAVSTAR Satellite Orbit Arrangment.

 The control segment of GPS consists of tracking stations located throughout the world.

These control facilities monitor signals from the SVs and calculate precise orbital data and SV

clock corrections for each satellite. The Master Control facility (located at Falcon Air Force

Base in Colorado) then uploads these corrections to the satellites.

 The user segment of GPS consists of GPS receivers. Four GPS satellites are required

to calculate position and time. Using PPS allows the user about 18 meter horizontal accuracy,

 21

28 meter vertical accuracy and 100 nanosecond time accuracy. SPS, which has been available

to all users worldwide receivers, was initially degraded the DOD through the use of Selective

Availability (SA), which introduces a time-varying bias. However, in May of 2000, SA was

turned-off and even L1 receivers can reach PPS accuracy levels.

 Accuracy is greatly affected by bias errors, which include tropospheric delays,

ionospheric delays, satellite clock and ephemeris data, multipath and SA. Multipath occurs

when the signal from a satellite arrives from more than one propagation route (reflections). The

biggest error source is SA. Afterwhich, the rest of the bias errors can be eliminated by using

differential GPS (DGPS). The basic principle behind DGPS is to place a receiver (base) at a

known location to calculate these bias errors for each satellite.

The errors are then transmitted via radio modem to a remote receiver. The remote receiver

uses the corrections to calculate its position more accurately (generally to within about a meter).

In order for the principle to work, the base and the remote receivers must see the same bias

errors (or same satellites), which requires them to be relatively close (within 12 miles).

 To improve the accuracy even further (< 1.0 m), a differential carrier phase tracking

technique must be used. Here, the phase shift between the same signal measured at 2 different

locations translates to the relative distance of the 2 receivers. An example of such is the

Ashtech Z-12 receiver currently on the NTV. Also, it is important to note that carrier-phase

allows for Real-Time Kinematic (RTK) measurements which is critical in precise navigation.

 A variation of DGPS involves differential corrections broadcast on radiobeacon

transmissions. These allow for a single remote receiver capable to reading DGPS beacon

 22

signals to calculate position to within a meter. This also eliminates the need for a base station,

which may compromise the range of the remote receiver.

 Problems associated with GPS include direct line-of-sight with the satellites and slow

update rates. GPS is highly susceptible to signal loss when the receiver does not have clear

direct line-of-sight with the satellites. Thus, operating in close proximity to natural obstructions

such as trees and mountains, as well buildings can seriously compromise its performance.

Recently, receivers have been developed to operate under dense foliage. Also, data output

rates are normally 1 Hz with some receivers able to handle position update rates up to 10 Hz.

The tremendous acceptance level of GPS, for positioning and navigation purposes,

comes because of the extreme ease of use, the relatively high-accuracy level, and the excellent

reliability factor. The system’s operational simplicity, accuracy, and reliability are the keys,

which make it an indispensable military resource.

Military applications include enroute navigation, terminal navigation, low-level

navigation, non-precision approach, target acquisition, close air support, missile guidance,

command and control, air drops, surveying and mapping, time synchronization, rendezvous,

bombing, drone vehicle control, base/site preparation, search and rescue, reconnaissance, mine

placement, space navigation. During Operation Desert Storm, GPS was used extensively for

land navigation in the desert, troop movements and logistical support [Cla96].

 Table 2.3, 2.4, 2.5 and 2.6 outline the specifications of several commercially available

GPS receivers.

 23

 Table 2.3: Novatel GPS Receivers.
 RT-2 RT-20
Position Accuracy
 standalone (SA off) 11 m CEP* 15 m CEP*
 differential (RT-2) 1 cm + 2 ppm* 0.20 m CEP*
 post-processed ± 5 mm + 1 ppm* ± 5 mm + 1 ppm*
Time to first fix (cold start) 67 s 67 s
Reacquisition (warm start) 1 s L1, 10 s L2 1 s L1, 10 s L2
Data Rates
 raw data 10 Hz 20 Hz
 position 10 Hz 10 Hz (5 Hz RT-20)
Time accuracy (SA off) 102 ns RMS* 50 ns RMS*
Channel Tracking 12 L1 / 12 L2 + carrier

tracking
12 L1 + carrier tracking

Power Consumption 9.75 W 8 W
Physical Dimensions
 Millenium (card) 17.9 x 10 x 1.5 cm 16.7 x 10 x 1.5 cm
 PowerPack-II 21 x 11.1 x 4.7 cm 20.8 x 11.1 x 4.7 cm
 ProPak-II (Beeline) 25.1 x 13.0 x 6.2 cm 24.5 x 13.0 x 6.2 cm
Weight
 Millenium 175 g 175 g
 PowerPack-II 980 g 1 Kg
 ProPak-II 1.3 Kg 1.2 Kg
Price
 Millenium $ 9,000 $ 5,000
 PowerPack-II $ 10,000 $ 6,000
 ProPak-II $ 11,000 $ 7,000
 *CEP – Circular Error Probable (circle where 95% of position errors fall into)
 *ppm – Parts Per Million
 *RMS – Root Mean Square

 24

 Table 2.4: Ashtech GPS Receivers.
 Z-12 Z-Xtreme Z-Eurocard GG24 Sensor

Position Accuracy

 real-time differential < 1 m < 1 m 3.0 m CEP 3.2 m CEP

 real-time kinematic 3 cm + 2 ppm H

5 cm + 2 ppm V

1 cm + 2 ppm H

2 cm + 2 ppm V

1.0 cm (1 Hz)

2.0 cm (10 Hz)

35.0 cm CEP

 post-processed 1 cm + 1 ppm H

2 cm + 1 ppm V

1 cm + 1 ppm H

2 cm + 1 ppm V

NA NA

Channel Tracking 12 ch L1/L2 12 ch L1/L2 36 ch L1/L2 36 ch L1/L2

Position Update Rate 1 Hz to 10 Hz 1 Hz to 10 Hz 1 Hz to 10 Hz 1 Hz to 2 Hz

RTK Range < 10 km NA NA

Interface RS-232 RS-232 RS-232 RS-232

Power Consumption 12 W 6 W 7.5 W 3.2 W

Physical Dimensions
(cm)

21.6 x 9.9 x 20.3 7.6 x 20 x 22.5 1.5 x 10 x 17 6 x 17 x 23

Weight 3.85 kg 1.7 kg 0.22 kg 1.6 kg

Price $ 20K - 26 K $ 14K - 15.5K $ 9K - 12K $ 7K - 9K

 Table 2.5: Trimble GPS Receivers.
 Military GPS Survey 4600 LS 4700

Position Accuracy

 standalone 16 m CEP NA NA

 real-time differential 1 m horiz, 1 m vert 0.2 m + 1 ppm 0.2 m + 1 ppm

 real-time kinematic 1 cm + 2 ppm horiz,

2 cm + 2 ppm vert

1 cm + 1 ppm horiz,

2 cm + 1 ppm vert

1 cm + 1 ppm horiz,

2 cm + 1 ppm vert

 post-processed 1 cm + 2 ppm horiz

2 cm + 2 ppm vert

1 cm + 1 ppm horiz,

2 cm + 1 ppm vert

1 cm + 1 ppm horiz,

2 cm + 1 ppm vert

Channel Tracking L1 / L2 + carrier 12 L1 + carrier 12 L1 / 12 L2 + carrier

Power Consumption 9 W < 1 W 6 W

Physical Dimensions 24.8 x 28 x 10.2 cm 22.1 Dia. x 11.8 cm 11.9 x 6.6 x 20.8 cm

Weight 3.1 kg 1.4 kg 1.2 kg

Price NA NA NA

 25

 Table 2.6: GBX Differential GPS / Beacon Receivers.
 GBX Series GBX-PRO

Position Accuracy 2-5 m (95 %) < 1 m (95%)

Channel Tracking 8 or 12 ch L1 12 L1 + carrier

Position Update Rate NA 10 Hz, 20 Hz

Beacon Channels 2 independent 2 independent

Beacon Frequency Range 283.5 to 325.0 kHz 283.5 to 325.0 kHz

Interface RS-232C RS-232C

Power Consumption 4.4 W 4.8 W

Physical Dimensions 15 x 12.5 x 5.1 cm 16.3 x 112.5 x 5.1 cm

Weight 0.73 kg 0.8 kg

Price $ 1400 $ 3000

Integrated Inertial Navigation System / Global Positioning System (INS/GPS)

An autonomous passive system, such as an inertial guidance system, provides

reasonably accurate instantaneous position, velocity, attitude and time (PVAT) output with no

dependence on any external man-made device or signal. Therefore, it is neither jammable nor

capable of being sensed from outside the vehicle. On the other hand, stand-alone navigation

systems, such as GPS, require externally provided electromagnetic signals from ground-based

radionavigation aids (NAVAIDS) or from space-based satellites (SV).

Integrated navigation systems combine the best features of both autonomous and stand-

alone systems and are not only capable of good short-term performance in the autonomous or

stand-alone mode of operation, but also provide exceptional performance over extended

periods of time when in aided mode. Integration thus brings increased performance, improved

reliability and system integrity, at the expense of increased complexity and cost. Moreover,

 26

outputs of an integrated navigation system are usually digital, thus they are capable of being used

by other resources or of being transmitted without loss or distortion [Bie99].

 The merging of INS and GPS is mutually beneficial and allows for a more reliable and

more accurate positioning system. As described earlier, the inherent drift of the INS

necessitates the GPS to provide it with accurate position updates, keeping the “navigation state”

current and thereby effectively eliminating the drift. External measurements are obtained and

processed through an extended Kalman filter to provide the most probable correction to the

navigation state estimate.

 In order to obtain the highest accuracy, DGPS is used. However, a lot of INS/GPS

systems employ stand-alone GPS for aiding. Such systems are common in aircraft navigation.

The use of DGPS introduces the factor of correction transmission integrity, where the radio

modem link must be maintained at all times.

 Aside from commercially-available INS/GPS systems, there has been a great deal of

development of custom INS/GPS systems by universities and research laboratories. The

selection of the components are crucial as ease of integration becomes a key factor.

 Novatel has recently entered the INS/GPS market with its Black Diamond System

(BDS). The BDS fuses a Honeywell HG1700AG11 IMU and a Novatel RT-2 DGPS through

a 15-state Kalman filter. This system is capable of outputting high accuracy position and

orientation data at rates up to 100 Hz. The BDS is discussed in more detail in Chapter 6.

 27

Types of Vehicle Applications

 The characteristics and limitations of each positioning system type greatly determines its

application in autonomous vehicle navigation

Indoor Vehicles

 Indoor vehicles typically use an encoder-compass positioning system set-up or an active

beacon type system using ultrasonics or light sources. The amount of slippage between the

vehicle’s wheels and the surface it travels on is minimal, making encoders ideal for measuring

position. A compass is used to account for changes in orientation

An example of an autonomous ground vehicle (AGV) that uses an encoder-compass

positioning system is the Cybermotion K2A robot (see Figure 2.5) which was automated by

CIMAR.

Figure 2.5: UF’s Cybermotion K2A.

The University of Oxford has developed a navigation for a low speed, indoor AGV

suitable suitable for industrial use. This system uses SONAR to detect obstacles, comparing it

 28

to a map supplied by the user containing all the possible obstacles to determine current vehicle

position. Odometer information is also used to calculate vehicle position. An external Kalman

filter is then used to integrate these two estimates of the vehicle position [Ste95].

The University of Michigan has developed a benchmark test for odometric accuracy of

mobile robots, called UMBmark. They tested six different vehicle configurations: (1) TRC

Labmate, differential drive; (2) Cybermotion K2A synchro drive; (3) CLAPPER MDOF; (4)

Remotec Andros; (5) Remotec Andros with encoder trailer; and (6) Smart Encoder Trailer

Simulation.

Outdoor Vehicles

 Outdoor vehicles are subject to a wider range of operating conditions. As such is the

case, the vehicle positioning system must be able to adapt well to changing environment such as

terrain variations and weather effects. The terrain variations make wheel encoders less effective

due to slippage and non-consistent ground contact forces. The use of Inertial Measurement

Units is ideal since they are self-contained and are hardly affected by external disturbances.

Also, given good satellite signal reception, Global Positioning Systems play a major role in the

positioning of outdoor AGVs. Furthermore, RF based beacon type systems are less subject to

interference and their long range make them suited for use on outdoor vehicles.

 Carnegie Mellon University, as part of their CyberScout project, has developed two

Unmanned Ground Vehicles (UGV) called Lewis and Clark. These are retrofitted Polaris

Sportsman 500 All-Terrain Vehicles (see Figure 2.6). Navigational sensing is performed by a

20-cm resolution NovAtel RT-20 DGPS unit. Currently each vehicle is equipped with five

cameras, a panning stereo pair in front for obstacle avoidance and mapping, and three pan/tilt

 29

cameras for surveillance, one each located at the front left, front right, and rear. Stereo vision is

employed to have a 3-dimensional understanding of the environment to perform free space

mapping, thus enabling obstacle detection and path-planning [Dol].

Figure 2.6: Carnegie Mellon University’s Cyber ATV.

 Researchers at the University of Michigan are using two autonomous vehicle test

platforms. The original vehicle, called MAVERIC, is an electric golf cart that contains a 486

PC to perform low level vehicle control, a DataCube hooked up to a CCD camera to grab

images, wheel encoders to calculate distance traveled, and a SUN IPX which runs a reactive

planner and navigation behaviors. The MAVERIC robot system architecture consists of four

layers: vehicle control layer, behavior control layer, manager layer, and the planner layer [Ken].

The planning layer consists of an implementation of the Procedural Reasoning System

planner (PRS) developed at SRI. PRS allows the robot to pursue long-term goals by adopting

pieces of relevant procedures based on context rather than blindly following a prearranged plan.

The current vehicle testbed is a military all-terrain vehicle, the HMMVW [Ken].

 30

Figure 2.7: University of Michigan’s MAVERIC.

Figure 2.8: University of Michigan’s HMMVW.

An excellent case where GPS is relied on solely for vehicle positioning is in the

development of an autonomous John Deere 780 agricultural tractor by Stanford University. The

position and orientation are computed using a four single-phase GPS antenna array mounted on

 31

orthogonal axes defining the vehicle roll and pitch. High accuracy position and orientation are

obtained by using differential GPS in conjunction with an additional ground station, called a

pseudolite, which sends out GPS-like signals. Experimental results have shown position

standard deviation to be 2.5 cm while orientation standard deviation to be less than 1 degree

[Oco].

Figure 2.9: Stanford University’s Robotic John Deere 7800.

Military Applications

The military has a long history of developing GPS and IMU guidance technology for

aircraft and weaponry. The first weapon GPS receiver was developed in the late 1970s. More

recently, the Tactical GPS Antijam Technology (TGAT) program, completed in 1992,

developed an adaptive GSP filter/antenna that simultaneously accomplished jammer

discrimination in both the spacial and temporal domains. More recently, a tightly coupled

weapon grade IMU/GPS system has been used to develop a low cost high antijam system.

 32

The United States entered into a cooperative Engineering and Manufacturing

Development (EMD) program with the United Kingdom, Germany, France and Italy to develop

a new guided rocket for the Multiple Launch Rocket System, the M30 GMLRS. The M30

uses a Honeywell IMU and a GPS receiver (10 m. CEP) for navigation and guidance. On

February 11, 1999 with a GPS-aided flight test, the M30 flew 49 km and impacted an

impressive 2.1 meters from the target center.

33

CHAPTER 3
MAPS / ASHTECH GPS POSITIONING SYSTEM

 On the Navigation Test Vehicle (NTV), the current positioning system used is an

integrated INS/GPS system. The Inertial Navigation System is a Honeywell H-726 Modular

Azimuth Position System (MAPS) and the Global Positioning System is an Ashtech Z-12

Differential GPS.

 The following chapter is based on previous research conducted since 1992 by graduate

students working on CIMAR’s Autonomous Vehicle Project. This chapter largely contains

excerpts from research papers written on the development and implementation of the

MAPS/Ashtech system. Furthermore, the chapter contains information from Honeywell’s

Modular Azimuth Position System technical description manual and the Ashtech Z-12 GPS

Receiver manual.

It must be noted that the MAPS/Ashtech positioning system has been extensively

utilized and tested since 1996. Further, it has been adapted to several different ground vehicle

platforms, which have demonstrated various practical military applications.

Overall System Description

 The MAPS/Ashtech positioning system is essentially a GPS-aided INS that is integrated

through an external Kalman Filter (KF). The MAPS offers position and orientation data at all

times at data rates of 10 Hz. The GPS prevents the MAPS position output from drifting by

 34

constantly updating it with high accuracy DGPS position at lower data rates of 1 Hz. The job of

the KF is to predict or estimate a future position and vehicle trajectory based from the

INS/GPS model, current and previous position and orientation data. Such estimates increase

position accuracy not only during normal operation but more importantly in the event of GPS

loss.

Honeywell H-726 Modular Azimuth Position System

The Honeywell H-726 Modular Azimuth Position System is a completely self-

contained, strapdown inertial navigation system. The MAPS consists of a Dynamic Reference

Unit (DRU), a control display unit (CDU) and a vehicle motion sensor (VMS). The DRU is the

heart of the MAPS system providing all necessary navigation data. Given only initial position,

the DRU uses three ring laser gyros and three accelerometers combined with support

electronics to accurately determine position, angular orientation, velocities and angular rates in

real time [Arm93].

System Specifications and Features

 The physical dimensions, weight, operational conditions, power requirements, and other

features are listed in Table 3.1. Table 3.2 shows the performance and specifications for the

MAPS.

System Components

 The DRU is shown in Figure 3.1 with its top cover removed. The DRU’s basic

components consists of an inertial sensor assembly, main processors and support electronics

including power supplies.

 35

 Table 3.1: Honeywell H-726 Features.
Feature Honeywell H-726 MAPS

Dimensions (L x W x H) 15” x 10.75” x 8.7”
Weight (lb) 46.7

Housing Cast Aluminum
Allowable Temperature Range -46°C to +60°C

Allowable Vibration Tracked Vehicles
Allowable Shock Howitzer gunfire

Allowable Angular Rate 400 degrees/second
Voltage Requirements 24VDC (18.5-36.0 VDC)
Power Requirements 103 Watts

Communications Interface Bi-directional RS422 SDLC

 Table 3.2: MAPS Performance versus Specifications.

 36

Figure 3.1: Honeywell H-726 MAPS Dynamic Reference Unit (DRU).

 The inertial sensor assembly (ISA) is shown in Figures 3.2 and 3.3. It is a removable

calibrated assembly containing the inertial components necessary for measuring the rotation

angles and accelerations in three-dimensional space. It includes the following subassemblies:

1. Three GG1342 Ring Laser Gyros (RLGs)

2. Three Sundstrand QA2000 Q-FLEX accelerometers

3. Temperature/calibration coefficient PROM

4. High voltage power supply

5. ISA precision sensor block

 37

Figure 3.2: MAPS DRU Inertial Sensor Assembly Schematic.

Figure 3.3: MAPS DRU Inertial Sensor Assembly.

Ring Laser Gyros. Each of the three RLGs contained in the DRU is a single axis device capable

of measuring angular rotations and angular rates about the input axis. The three gyros are

 38

mounted mutually perpendicular and co-linear with the accelerometers on the coordinate axes

allowing measurements in three-dimensional space.

The RLG does not use a spinning mass as used in most conventional gyros. The RLG is

a Sagnac interferometer. The device is a laser that incorporates three reflectors, arranged so

that the light beams form an enclosed triangle. The reflecting mirrors, together with the light-

amplifying medium in the light path, constitute the oscillator. Two such oscillators propagate

light energy along the same path but in opposite directions. The frequencies at which these

oscillators operate are determined by the length of the optical path. If the ring laser is stationary

in inertial space, the clockwise (cw) and counterclockwise (ccw) beams oscillate at the same

frequency. Rotation causes a slight difference in the cw and ccw path lengths, and consequently

the wavelengths and oscillating frequencies. These differences in frequency are proportional to

inertial angular rate. Figure 3.4 shows a schematic of the RLG [Tit97].

 Figure 3.4: Ring Laser Gyroscope Schematic.

 39

Accelerometers. Three single-axis accelerometers are mounted mutually perpendicular as with

the three RLGs. These sensors measure the acceleration on each axis which can then be

integrated to determine velocities and displacements.

 Figure 3.5 shows a schematic of the QA2000 accelerometer. Acceleration is

determined using a common force balance technique as follows: A quarts-flexure suspension

supports a torquer coil/seismic element that functions as the moving element of a differential

capacitor pick-off. An input acceleration causes deflection of the seismic element and capacitor

plate, producing an AC output voltage. This voltage is fed back to the torquer coil producing

an electromagnetic torque to balance the inertial effects of the sensed acceleration. The

feedback current required to maintain the pendulum at a balanced position is directly

proportional to the acceleration.

Figure 3.5: QA2000 Accelerometer Schematic.

 40

 The software tasks performed by the DRU are partitioned onto two STD-1750A

processors, the inertial processor (IP), and the survey processor (SP). Figure 3.6 shows a

breakdown of the tasks performed by each processor.

 The primary function of the IP is to process raw inertial data that is outputted directly

from the gyros and accelerometers. The IP uses the 1750A assembly language, that is common

to all Honeywell RLG products, to handle the high through-put and computational rates

required.

 The survey processor takes compensated velocity and rate data from the IP and

computers survey and positioning parameters. In addition, it performs built-in tests (BITs),

monitors other system functions, and processes commands received over the two data buses.

Because the speed demands are less crucial, the SP uses the JOVIAL J73B high-order

programming language [Arm93].

Figure 3.6: Inertial Processor (IP) and Survey Processor (SP) Commands.

 41

 The DRU’s support electronics include gyro and accelerometer electronic assemblies,

A/D-Pulse accumulator module, I/O interface, thermal sensors, and power supplies. The

DRU’s functional block diagram is depicted in Figure 3.7.

Figure 3.7: DRU Functional Block Diagram.

Commands and Messages

 Table 3.3 list the DRU’s commands, command rates and response times. Table 3.4

defines the data messages.

 42

 Table 3.3: DRU Commands.

 43

 Table 3.4: DRU Data Messages.

 44

Modes of Operation

The MAPS DRU has four basic modes of operation:

Power-Up : The DRU performs a series of built-in tests (BIT) and initialization procedures to

ensure that all systems are functioning properly.

Align : The DRU establishes a directional reference by self-leveling and performing a gyro-

compassing alignment to true north. A ‘Normal Align’ mode, which typically takes 10-15

minutes, uses external position inputs to calculate its orientation. A ‘Stored Heading Align’

mode uses previously stored values of position and attitude from last power down to speed up

the alignment process.

Survey : After the first 3 minutes of a normal align or upon completion of a stored heading align,

the DRU continuously updates position, orientation and angular rates. Velocity errors, which

grow with time, are countered by ‘Exclusive ZUPT mode’ and ‘Odometer mode’. In the

Exclusive ZUPT mode, the DRU, which has to be in a stationary or rest position, resets the

velocity errors to zero. In the Odometer mode, the DRU uses both the ZUPT information and

external odometer pulse information to damp velocity errors.

Power-Down : As soon as the host computer sends a shutdown command, the DRU will store

all pertinent information and orientation data and perform BITs before shutting down system

power.

 45

Ashtech Z-12 GPS Receiver

 The Global Positioning System component selected for integration was the Ashtech Z-

12 GPS receiver (Figure 3.8). This functionality, performance and rugged design of this

receiver is ideal for military applications. The differential set-up is comprised of a Z-12

receiver as a remote receiver (on the NTV) and a second Z-12 receiver as a base receiver.

Figure 3.8: Ashtech Z-12 GPS Receiver.

System Specifications

It has twelve independent channels an can track all of the satellites in view automatically.

It uses carrier-phase differential to estimate remote receiver position to within 6 centimeter

accuracy. Figure 3.9 shows a dynamic test of the Ashtech Z-12 in carrier phase differential

mode. The output position data rate is 1 Hz.

System Features

 Aside from Real-Time Kinematic position solution updates (while in carrier-phase

differential mode), the Ashtech Z-12 offers numerous useful features. A front-panel display

allows the user to view information from position data, satellite-in-view information and

availability, and even allows storage of survey data in multiple files. These data files can then be

downloaded and post-processed using proprietary Ashtech software, PNAV, to calculate

position to within 2 millimeter accuracy. The current receiver software has been recently

 46

upgraded to eliminate computational errors brought about by the turnover from year 1999 to

2000 (Y2K). Each Ashtech Z-12 receiver also has its own GPS antenna with choke ring, a

radio modem for transmitting / receiving differential corrections and a 12-volt power supply.

Figure 3.9: Dynamic Test of Ashtech Z-12 DGPS Receiver.

Message Sets

 The essential position data in geodetic coordinates is logged out of the remote receiver

at 1 Hz. This real-time data log is output as a “Cben” type message in ASCII format. The

format of the position message fields is given below:

à “$PASHR,CBN,” header string

à Receive time: GPS time in seconds of week when code was received

à Station position: Latitude (degrees)

 47

à Station position: Longitude (degrees)

à Station position: Altitude (meters)

à Velocity in East direction (m/sec)

à Velocity in North direction (m/sec)

à Velocity in Up direction (m/sec)

à RMS position error (meters)

à Number of Satellites used for position computation

à PDOP, Position Dilution of Precision

System Integration

 Integration of the MAPS and the Ashtech Z-12 GPS receiver was done by using

CIMAR’s MAX Architecture standards. The MAPS/Ashtech system is a fully-independent

and self-contained unit. The components are put on rack-mounted shelves. The primary shelf

includes a Z-12 GPS remote receiver, a Freewave radio modem, and the primary host

computer (POS PC-104 stack). The secondary shelf houses the H-726 MAPS and a 12V-

24V DC-DC power converter. Figure 3.10 shows the present hardware set-up.

System Configuration

 The system schematic is depicted in Figure 3.11. Tables 3.5, 3.6 and 3.7 lists the

configuration of the MAPS DRU, Z-12 receiver, and Freewave radio respectively.

 48

Figure 3.10: MAPS/Ashtech GPS POS Shelf.

Figure 3.11: MAPS/Ashtech GPS Schematic.

PC-104
POS
Main

Ashtech Z-12
DGPS

Receiver

Freewave
Radio

Modem

Honeywell
H-726 MAPS

DC-DC
Converter

Serial Connection
Parallel Connection
Ethernet Connection

TO MCU VDC IN

12 VDC Power
24 VDC Power

Ashtech Z-12

Honeywell MAPS

PC-104 POS

Freewave
Radio

 49

 Table 3.5: MAPS DRU Configuration Settings.
Parameter Current Setting

Velocity Damping Mode Exclusive ZUPT

ZUPT Interval 4.0 minutes

Normal Align Time 15.0 minutes

Stored Heading Align Time 1.5 minutes

Tracked / Wheeled Vehicle Wheeled

 Table 3.6: Ashtech Z-12 GPS Remote Receiver Settings.
Parameter Current Setting

Survey Mode Carrier Phase Differential (RTK)

Position Message Type cben

Position Message Output Rate 1 Hz

Differential Corrections Rate 1 Hz

Serial Port A Data Rate 19600 bps

Serial Port B Data Rate 19600 bps

1 PPS Output ON

Minimum Satellites 4

 Table 3.7: Freewave Data Transceiver Settings.
Parameter Current Setting

Data Rate 19600 bps (baud)

Data Bits 8

Parity None

Stop bits 1

Transmission Frequency 926.5 Khz

Frequency Key 5

 50

Communications Interface

 Table 3.8: Communications Configuration.
Parameter POS to MCU MAPS to POS GPS to POS Radio to GPS

Interface Type RS-232 RS-422 SDLC RS-232 RS-232
Data Rate 19600 bps 38400 bps 19600 bps 19600 bps
Data Flow bi-directional bi-directional GPS à POS Radio à GPS

Port A POS COM1 MAPS Main GPS Port A Radio
Port B MCU COM3 POS COM3 POS COM2 GPS Port B

Hardware - Sealevel ACB104
using polling

- -

System Control

 The primary or host computer (POS) contains the software for integration. The system

control is divided into five areas: MAPS, GPS, Filter, Sysman, and Hostcom. All programs are

written in C language running on Lynx RT (Real Time) Operating System.

MAPS : This handles all communications between H-726 MAPS and host computer. This

includes receiving and processing of MAPS position and orientation data, sending of position

updates and system commands.

GPS : This block reads in GPS position messages and stores the data in shared memory. Also,

a 1 PPS (Pulse Per Second) signal is used to reset the PC104 system clock synchronizing it

with GPS time.

Filter : This part includes the external Kalman filter code and inputs from MAPS and GPS.

The output position and orientation data is then sent through Hostcom to the MCU.

Sysman : This takes charge of monitoring all the processes performed by the MAPS, GPS, and

Filter programs.

Hostcom : This handles all data transferred to and from the POS and the MCU.

 51

Debug : This program allows the user to run the POS system independently during testing or

system debugging phase.

POSConfig.cfg : This file contains the position and orientation offsets (in vehicle coordinates) of

each sensor, namely: (1) MAPS to Control Point and (2) GPS to Control Point. These offsets

are critical in accurately referencing sensor position thereby allowing more effective vehicle

control.

Kalman Filter Design and Implementation

 An external filter is used to integrate the MAPS and DGPS position data in order to

form a navigation solution. The filter used is a linear discrete Kalman filter. The filter includes

nine states for the MAPS’ position, position rate and tilt errors. Since the filter is being used for

a ground vehicle, it is implemented in a local level geodetic frame. As a result, other MAPS

errors can be included as process noise terms in the filter as tuning parameters. The filter

processes the DGPS data by alternating between position and change in position [Rog96].

Timing

 The DGPS and MAPS data that are being used to calculate the error in the MAPS data

must be valid at the same time, reaching an accuracy of timing in the order of one-hundredth of

a second [Wit96]. Since only the GPS data includes a time stamp, expressed in seconds of the

week in Greenwich Mean Time (GMT), it is used as the reference to which the MAPS data will

be tied to. The synchronization is carried out using the GPS receiver’s 1 PPS output that sends

a TTL signal into a 75 ohm-impedance and signals the exact time the GPS position data is valid.

The 1 PPS is then read in by the primary POS PC104 stack through a parallel port, thereby

also setting the system clock.

 52

 Once the POS clock is synchronized with GPS time, the current time is accessed and

stored immediately before the MAPS unit is polled for its position and orientation data. The

latencies to be accounted for include time it takes to: (1) transmit message requesting MAPS to

send data message, (2) MAPS to acknowledge send command since MAPS is updating at

12.5 Hz, and (3) MAPS to transmit data message to host computer.

 To counter this, the sum of these latencies are experimentally determined by matching

the DGPS position with MAPS position using turns as reference points. The difference in time

between the two systems at that reference point is then used as an offset, effectively

synchronizing the whole system.

System Performance

 The navigation filter assumes that the position data from the DGPS is accurate to within

a tenth of a meter. It uses the DGPS data to build an error model of the MAPS position,

position rate, and tilt errors. The accuracy of the filter is highly dependent on the accuracy and

availability of the DGPS data. The purpose of the error model is to calculate the position even

in the event of loss of DGPS data, and to check the quality of the DGPS data before it

processes this data.

 The accuracy of the filter is tested using several scenarios that may occur which could

compromise system performance. First, the system is tested under ideal conditions. Second,

temporary loss of DGPS data will be tested. And lastly, complete loss of DGPS data will be

simulated. All tests are conducted at Flavet field at the University of Florida. The GPS base

station is within 125 meters of the vehicle at all times. MAPS, DGPS, and filter position data

 53

are recorded during each test. The error in each position data set is calculated by comparing

them to the results of post-processed GPS data [Wit96].

Testing Under Ideal Conditions

 To test conditions when DGPS data always available and to within required accuracy,

the NTV is allowed to survey in an open area free from GPS signal obstructions. In Figure

3.12, the MAPS and DGPS position data are plotted against each other. Here the drift in the

MAPS position is quite clear.

 Figure 3.13 is a plot of the position data output of the filter. As shown in Figure 3.14,

the average error is 7 centimeters.

Figure 3.12: DGPS and MAPS North versus East.

 54

Figure 3.13: Filter North versus East.

Figure 3.14: Filter Radial Position Error versus Time.

 55

Testing Under Adverse Condition

 The presence of redundancy in the system plays a major role when the system is

subjected to less than ideal conditions. As pointed out earlier, GPS loss is the biggest concern.

Just how the Kalman Filter compensates for GPS outages is tackled in the successive sections.

Temporary Loss of DGPS data

 When the NTV travels is in a place which does not permit direct line-of-sight with at

least 4 satellites, such as driving under trees or beside tall buildings, there is said to be

temporary loss of GPS data.

 To simulate loss of GPS data, three specific areas inside the survey field are marked off.

When the NTV passes through these marked areas, DGPS data is withheld from the Kalman

filter. Figure 3.15 shows the survey field, the marked areas and position data output of the

filter. As seen from the results listed in Table 3.9, the temporary loss of GPS data does not

significantly reduce the accuracy of the Kalman filter navigation solution.

Table 3.9: Deviation of Real Time Data from Post-Processed DGPS Data
 Temporary GPS Loss Ideal Conditions

Average Deviation (m) 0.06 0.06
Maximum Deviation (m) 0.32 0.32
Standard Deviation (m) 0.04 0.03

Complete Loss of DGPS data

 Complete loss of GPS data occurs when the NTV goes out of the communication range

of the base station thereby losing the differential corrections. This will cause the GPS position

accuracy to rapidly grow and thus be discarded by the filter.

 56

 To test this case, the NTV is first allowed to navigate autonomously for fifteen minutes,

during which the filter constructs a model of the MAPS errors. After 15 minutes, the GPS data

is withheld from the filter. The NTV is then allowed to navigate for another 5 minutes. In the

succeeding two tests, the amount of time used to construct the MAPS error is 30 and 45

minutes respectively.

Figure 3.15: P-GPS and Filter North versus East
With Temporary Loss of DGPS Aid.

 A number of test runs for each case gave similar results. They are summarized in

Figures 3.16 and 3.17. In each of these tests, the filter is able to maintain an accuracy of

approximately one meter for two minutes after the loss of GPS data [Wit96].

P-GPS Filter

 57

Figure 3.16: Filter Radial Error versus Time
Since Loss of DGPS Aid – Best Case.

Figure 3.17: Filter Radial Error versus Time
Since Loss of DGPS Aid – Worst Case.

58

CHAPTER 4
NOVATEL BEELINE GPS POSITIONING SYSTEM

The Novatel Beeline GPS system offers both real-time kinematic position

(accurate to 25 cm CEP) and orientation data (accurate to 0.4 deg) at 5 Hz. The system

costs approximately $25,000.

Unlike the Ashtech Z-12 GPS receiver which can process 12 channels of L1 (C-

code, coarse code) and L2 (P-code, precise code), the Beeline uses a dual antenna, 16

channel L1/L1 system (see Figure 4.1). A primary antenna is used as the reference point

from which outputted position data is based. The secondary antenna is used to compute

the vehicle baseline vector, giving azimuth (yaw) and pitch values. To compute for roll,

a second beeline system can be installed 90 degrees (in the x-y plane) from the primary

beeline set-up.

Figure 4.1: Novatel Beeline GPS Antenna Set-up on Navigation Test Vehicle.

 59

Installation and Set-up

GPS Antennas

As described earlier, the Beeline system uses two antennas. Model 501 Novatel

GPS antennas are mounted on choke rings (to lessen multipath signals that can result in

erroneous position solutions). The vehicle baseline was set by aligning the primary and

secondary antennas with the Ashtech antenna along the vehicle x-axis. This manual

calibration will allow easy translation of eithe r GPS system position point along the main

vehicle axis. In order to accurately compare the output position of both the MAPS/POS

and Beeline systems, the antenna offset and baseline distance were strictly measured to

within 1 mm. The antenna offset (distance between Ashtech antenna and Beeline

primary antenna) was measured as 0.957 m. The baseline distance (distance between

Beeline primary and secondary antennas) was measured as 1.359 m. Novatel

recommends at least a 1.0 m baseline distance to get good orientation values and avoid

multipath errors. The baseline distance, which was then inputted as a fixed parameter in

the Beeline receiver configuration, allows for faster attitude alignment and more accurate

attitude solutions. Figure 4.2 shows the antenna configuration.

 60

Figure 4.2: Beeline Antenna Configuration.

Beeline shelf

The Beeline shelf, shown in Figure 4.3, contains the Beeline receiver, a Freewave

wireless data transceiver (radio), a PC104 computer stack, cables and connections, and a

12 VDC input power receptacle. A Null-modem serial data cable connects the second

serial port on the PC104 to COM1 of the Beeline receiver. This is the main data line

where position and orientation data are sent and processed by the beeline program on the

PC104. The controlling program runs on a LYNX real-time operating system. A straight

serial data cable connects COM2 of the Beeline receiver with the Freewave radio. This

line is used for incoming differential corrections sent by the RT20 base station receiver.

 61

The radio connects to a MAXRAD 9053 radio antenna. RF antenna cables connect RF1

and RF2 ports on the Beeline receiver to the primary (RF1) and secondary (RF2)

antennas. +12 VDC is supplied through an AC-DC converter, powered by a gas

generator and backed-up by an UPS.

Figure 4.3: Beeline POS Shelf Layout.

Base Station

The Base Station is used to send differential corrections from a base station GPS

receiver to the rover GPS receiver. The base point over which the base antenna will be

located is a fixed pre-surveyed point. The existing base station point (which is used for

all autonomous tests in Flavet field) was used a reference point to survey in a second base

point. Using 2 Ashtech receivers, the original base point (base point 1) was set-up as the

base and a second point was arbitrarily located approximately 6.3 m away due east.

Using post-processing, the coordinates of the second point were calculated to millimeter

(2 mm) accuracy. Tables 4.1 and 4.2 lists the exact coordinates and distances.

 62

Table 4.1: Base Station Coordinates.
Position Latitude (dec.deg) Longitude (dec.deg) Altitude (m)

Base Point 1 29.6472687 -82.35443972 15.000

Base Point 2 29.64726896 -82.35437489 14.8615

Table 4.2: Base Point Distances.

 Base 1 to Base 2

Northing Distance (m) -0.0289

Easting Distance (m) -6.272

Total Distance (m) 6.272

The base station antennas were set-up as follows: base point 1 – Ashtech ; base

point 2 – Beeline (see Figure 4.4). The short separation allowed for all GPS receivers

and radios to be housed in one portable case. This includes a Ashtech Z-12 GPS receiver

connected to a Freewave radio (with a whip antenna), a Novatel RT-20 GPS receiver

connected to a second Freewave radio (with a MAXRAD antenna), and a 12V AC-DC

converter. Normal operation is powered by a Honda gas generator with a rechargeable

battery pack as back-up. The base station unit is shown in Figure 4.5.

Figure 4.4: Base Station Set-Up on UF Flavet Field.

 63

Figure 4.5: Dual Base Station GPS Receiver and Radio Unit.

Testing Procedures

The performance of the Beeline was measured relative to the MAPS/Ashtech

system. All tests were conducted in Flavet field (commonly known as the bandshell) in

the University of Florida. The tests were broken down into: (1) Alignment, (2) Accuracy,

(3) Recovery, (4) Latency, (5) Weather. Due to persistent problems with the beeline

receiver, the Latency and Weather tests were not performed.

Alignment test

The Alignment test is divided into a Static and Dynamic test. In the Static Align

test, the vehicle was parked approximately 42 meters away from base point 2 for all runs.

Runs lasted 30 minutes (to allow sufficient time for position and orientation to converge).

The Dynamic Align test, which also lasted 30 minutes, was conducted by running the

vehicle autonomously doing a minor field sweep. Data loggers were used by both

systems to record all position and orientation data.

 64

Accuracy Test

In the Static part of the accuracy test, the vehicle was parked in 4 set directions.

Using the yaw value of the MAPS/Ashtech system, the vehicle was oriented as follows:

(1) Due North – 0 degrees, (2) Due East – 90 degrees, (3) Due South – 180 degrees, (4)

Due West – 270 degrees. The yaw value was zeroed in to ±0.1 degree. Data was

gathered at each position for 5 minutes twice during each run. In the Dynamic accuracy

test, the vehicle ran a long field sweep (1 hour), with both MAPS/Ashtech and Beeline

systems collecting data in real- time.

Recovery Test

The recovery test consisted of position degradation due to 2 cases: (1) primary

antenna losing satellites, and (2) differential corrections not being received by the

Beeline. The first case was simulated by covering the primary antenna for fixed duration.

The second case was achieved by breaking the radio link between base and rover for a

specified amount of time.

Calculations, Data Recording, and Post-Processing

Both systems used separate data loggers to output position files. These were

formatted to give data in the nearly the same format to facilitate post-processing. As

explained earlier, the MAPS/Ashtech system reads in data from both GPS receiver and

MAPS unit, computes a position and orientation solution through a Kalman filter. The

output file is then sent to to Mobility Control Unit (MCU) which uses it for vehicle

navigation. The MCU contains the data- logger for the position file. The output position

is translated 0.957 m. along the negative vehicle x-axis to coincide with the measuring

point of the primary Beeline antenna. This is accomplished by entering the offset value

 65

in the POS configuration file. The output data screen of the position component on the

MCU program is shown in Figure 4.6.

Figure 4.6: MAPS/Ashtech POS Output Data Screen on the MCU.

The Beeline uses 3 data logs, outputted by the Beeline receiver to the PC104 at 5

Hz. The PRTKA log contains the real-time kinematic position data in latitude, longitude

and altitude. The ATTA log contains attitude (orientation) data in azimuth (yaw) and

pitch. The VLHA log contains velocity data including horizontal speed over ground and

track over ground (heading) [Nov98]. Accuracy of the data is characterized by error

probabilities and denoted by the standard deviation values of the data fields. These

values are also available in the logs. The output screen of the Beeline program is shown

in Figure 4.7.

 66

Figure 4.7: Beeline Data Output Screen.

The main benchmark output field of the Beeline program is the Pos RMS value.

2
ALT

2
LON

2
LAT)()()(RMSPos σ+σ+σ= (3.1)

where LATσ is the latitude standard deviation

 LONσ is the longitude standard deviation

 ALTσ is the altitude standard deviation

The Pos RMS was used as the main accuracy measurement of the Beeline. Two

other markers are the POS status and RTK status. POS status indicates which position

mode it is in: (0) no position, (1) single point mode, (2) pseudorange differential mode,

(3) RT-20 position. The RTK status ind icates the type of position solution in RT-20

mode: (0) converged solution, (1) non-converged solution. Thus, for accurate real-time

kinematic position, the POS status should read (3) and the RTK status should read (0).

During preliminary testing, it was discovered that the RTK status (0) was achieved when

the Pos RMS value dips to 0.5 m.

 67

Similarly, for orientation, the Theta RMS (orientation error) was computed as

2
PITCH

2
AZIMUTH)()(RMSTheta σ+σ= (3.2)

where AZIMUTHσ is the azimuth standard deviation

 PITCHσ is the pitch standard deviation

The ATT status marker indicates the attitude type: (0) no attitude, (1) good 2D

floating attitude solution, (3) good 2D integer attitude solution, (3) floating ambiguity

solution with line bias known, (4) fixed ambiguity solution with line bias known.

For velocity calculation, the horizontal speed over ground is stripped into the

individual components in the positive x, y, and z axes using the track over ground

(velocity vector azimuth value) minus the current azimuth. The VEL status marker

indicates the velocity state: (0) carrier phase based velocity, (1) Doppler data based

velocity, (2) old Doppler velocity. VEL status (0) assures good velocity accuracy.

All data files were post-processed using a comparator program. This program reads in

both the MAPS/Ashtech POS file and the Beeline data file, interpolates the GPS time

stamps (to match the data), calculates position, orientation and velocity errors, and

outputs 2 files, (1) ‘out’ file which contains the individual errors in time-based intervals,

(2) ‘stat’ file which displays statistics of error values and data integrity. The ‘out’ file,

which was used to plot the results, contains errors based on the following formula (

MAPS/Ashtech data – Beeline data, e.g. Northing error = MAPS/Ashtech latitude –

Beeline latitude). The ‘stat’ file summarizes the mean error and standard deviation error

values.

The Position errors were calculated as (1) 3D error (rms error of latitude,

longitude and altitude), and 2D error (rms error of latitude and longitude). The 3D error

 68

gives the overall relative error between the 2 systems. However, of greater importance is

the 2D error since presently, the vehicle uses only 2D path planning and vehicle control.

Also, for most GPS systems, the altitude values have higher error tolerances. In the

actual tests, the setting up of the base station antennas were performed using a plumb bob

and centered on the base point markers. However, the actual antenna height was never

measured (even for past position tests).

Test Results

Static Align Test

All three test runs resulted in consistent position and orientation convergence.

There was a direct correlation with Beeline Pos RMS and Pos error (MAPS/Ashtech –

Beeline). The summary of the four runs is listed in below in Tables 4.3 and 4.4.

 Table 4.3: Static Alignment Test Mean Error Values.
Beeline ERROR

Time Pos RMS Pos Orient Vel North East Alt Pitch Yaw

1734.8 0.089 0.079 2.048 0 0.005 0.079 -0.032 -0.613 1.954

1544.6 0.093 0.059 0.177 0 0.004 -0.059 0.049 0.093 -0.151

1762.4 0.375 0.096 2.35 0.002 0.061 -0.046 0.084 1.448 -1.426

5041.8 0.190 0.079 1.580 0.001 0.024 -0.007 0.033 0.324 0.128

 Pos – 3D Position error (m)
 Orient – 3D Orientation error (deg)
 Vel – 3D Velocity error (m/sec)
 North – Northing error (m)
 East – Easting error (m)
 Alt – Altitude (height) error (m)

 69

 Table 4.4: Static Alignment Test Standard Deviation Values.
Beeline STANDARD DEVIATION (STDev)

Time Pos RMS Pos Orient Vel North East Alt Pitch Yaw

1734.8 0.089 0.111 1.596 0.049 0.055 0.097 0.114 0.486 1.52

1544.6 0.093 0.082 0.107 0.036 0.034 0.074 0.034 0.052 0.094

1762.4 0.375 0.072 2.49 0.056 0.035 0.062 0.042 1.833 1.667

5041.8 0.190 0.088 1.452 0.047 0.042 0.078 0.064 0.824 1.135

 Pos – 3D Position error (m)
 Orient – 3D Orientation error (deg)
 Vel – 3D Velocity error (m/sec)
 North – Northing error (m)
 East – Easting error (m)
 Alt – Altitude (height) error (m)

Table 4.5 gives a time-based summary of the error parameters during alignment.

Initially, when the POS status reaches (3) – RT20 position, the Pos RMS value starts at

3.5-4.4 m which translates to 1.71 m actual 3D Pos error. This converges exponentially,

and after 30 minutes reaches a Pos RMS of 0.172 m translating to 3D Pos error of 0.099

m. The 2D Pos error (lat+lon) was about 60-70% of the 3D error. Taking only 2D

position, it takes 60 seconds to achieve position to within 0.3 m. of the MAPS/Ashtech.

For 3D position, it takes 200 seconds to achieve 0.3 m accuracy. The average time to

converge to RTK status (0) – (converged solution of 0.5 m. Pos RMS) is 259.8 sec.

Through preliminary tests, it was determined that a 0.3 m Pos RMS gives adequate

position accuracy (0.09-0.12 m). It took 614.4 sec to reach the 0.3 m benchmark. The

attitude (orientation) solution converged after 837.2 sec. This process is referred to as

line bias calibration. In cold boot-up, this normally takes 10-15 minutes. Once the line

bias has been calibrated, accurate orientation is outputted.

 70

 Table 4.5: Static Alignment Test Time-Based Error Summary.
Time
(sec)

Pos RMS
(m)

3D Pos
(m)

2D Pos
(m)

Orient
(deg)

North
(m)

East
(m)

Alt
(m)

Pitch
(deg)

Yaw
(deg)

Remarks
(status)

0 4.076 1.706 1.259 22.216 1.188 0.418 1.148 20.308 8.389

60 1.168 0.871 0.266 7.623 0.152 0.142 0.792 5.868 3.218

120 0.829 0.482 0.266 4.483 0.174 0.193 0.398 1.207 2.274

180 0.645 0.31 0.216 6.963 0.131 0.132 0.218 3.443 5.772

240 0.529 0.28 0.221 4.271 0.12 0.158 0.151 0.469 4.199

259.8 0.5 0.294 0.238 3.619 0.115 0.188 0.152 0.557 3.555 converged
position

300 0.45 0.268 0.206 3.274 0.078 0.187 0.163 0.758 3.164

400 0.361 0.218 0.185 3.702 0.035 0.181 0.11 1.844 3.077

500 0.326 0.107 0.095 3.694 0.033 0.087 0.049 2.399 2.459

600 0.303 0.097 0.09 2.818 0.031 0.084 0.03 2.28 1.119

614.4 0.3 0.094 0.091 2.793 0.033 0.085 0.022 2.309 1.051 good
position

837.2 0.266 0.079 0.066 0.712 0.036 0.054 0.041 0.356 0.608 converged
attitude

900 0.257 0.09 0.076 0.708 0.04 0.06 0.048 0.381 0.595

1200 0.23 0.145 0.101 0.929 0.023 0.097 0.101 0.214 0.892

1500 0.197 0.088 0.069 0.741 0.031 0.052 0.052 0.376 0.59

1800 0.172 0.099 0.066 0.354 0.032 0.056 0.069 0.256 0.202

The results of Table 4.5 for Pos RMS, 3D Pos error, 2D Pos error are shown in

Figure 4.8. It is clear that the 3D Pos error is always less than the Beeline RMS. This

accounts for the fact that the error of the filter position solution has not been factored in.

Figure 4.9 shows that during the first minute of alignment, the northing error is greater

than the easting error. Afterwhich, the easting error converges to a higher value (0.056

m) versus the northing error (0.032 m). The altitude error was higher than both northing

and easting all thoughout the alignment process and converges to 0.069 m. In Figure

4.10, orientation error shows no clear pattern as both pitch and azimuth errors fluctuated.

 71

However, both converged to error values of 0.2-0.25 deg after 30 minutes.

Figure 4.8: Static Alignment Test Overall Position Error.

Figure 4.9: Static Alignment Test Directional Position Error.

 72

Figure 4.10: Static Alignment Test Orientation Error.

Dynamic Align Test

Similarly, all three test runs resulted in consistent position and orientation

convergence. There was a direct correlation with Beeline Pos RMS and Pos error with

convergence being slower than in static mode. It should be noted that during alignment,

the line bias has already been determined and thus, good attitude was already available.

The overall mean POS rms and 2D Pos error were higher for the dynamic mode than the

static mode. However, the standard deviation error values did not show significant

difference between dynamic and static modes. Velocity error values were low in the order

of 0.03±0.1 m/sec. The summary of the three runs is listed in Tables 4.6 and 4.7.

 73

 Table 4.6: Dynamic Alignment Test Mean Error Values.

RUN MEAN ERROR

Time
(sec)

PosRMS
(m)

2D Pos
(m)

Orient
(m)

Vel
(m)

North
(m)

East
(m)

Alt
(m)

Pitch
(deg)

Yaw
(deg)

Vel X
(m/s)

Vel Y
(m/s)

Vel Z
(m/s)

870 0.13 0.178 0.305 0.022 0.035 -0.175 -0.062 0.171 0.253 -0.013 0.003 -0.018

1343.8 0.33 0.188 0.207 0.028 0.174 -0.072 -0.086 0.054 0.2 -0.011 0.002 -0.026

2354.2 0.27 0.046 2.993 0.035 -0.011 0.023 0.112 2.918 0.24 -0.004 -0.001 -0.033

4568.0 0.261 0.113 0.246 0.030 0.052 -0.043 0.021 0.100 0.221 -0.008 0.001 -0.028

 Table 4.7: Dynamic Alignment Test Standard Devia tion Values.
RUN STANDARD DEVIATION (STDev)

Time
(sec)

PosRMS
(m)

2D Pos
(m)

Orient
(m)

Vel
(m)

North
(m)

East
(m)

Alt
(m)

Pitch
(deg)

Yaw
(deg)

Vel X
(m/s)

Vel Y
(m/s)

Vel Z
(m/s)

870 0.13 0.088 0.44 0.105 0.032 0.082 0.1 0.201 0.391 0.045 0.079 0.053

1343.8 0.33 0.16 0.391 0.12 0.092 0.131 0.092 0.107 0.377 0.049 0.085 0.07

2354.2 0.27 0.054 4.162 0.157 0.045 0.03 0.089 1.008 4.011 0.051 0.135 0.062

4568.0 0.261 0.092 2.344 0.136 0.056 0.070 0.092 0.589 2.253 0.049 0.110 0.063

In Table 4.8, position convergence is tabulated in time-based form. It almost

twice as long for the position solution to converge (dynamic - 542.0 sec vs. static – 259.8

sec). This was also the case in reaching good position (0.3 m Pos RMS) - (dynamic –

1083.4 sec vs. static - 614.4 sec). It can also be seen that even without a converged

position solution, it takes 300 sec (5 minutes) to reach reasonably good 2D position (<0.2

m error). Pos RMS converges exponentially, but is greatly influenced by the number of

satellites in view. For all tests, 6-8 satellites were visible 95% of the time. Figures 4.11,

4.12, and 4.13 show Overall Position, Directional Position and Orientation error curves

over time. It should be noted that in dynamic mode, the altitude error converged

similarly as in static mode (to 0.06-0.07 m), but the northing and easting errors converged

to a low value of 0.02 m.

 74

 Table 4.8: Dynamic Alignment Test / Time-Based Error Summary.

Time
(sec)

Pos RMS
(m)

3D Pos
(m)

2D Pos
(m)

Northing
(m)

Easting
(m)

Altitude
(m)

Remarks (status)

0 4.901 1.161 0.415 0.191 0.368 1.084

60 1.316 1.018 0.695 0.588 0.46 0.861

120 1.036 0.611 0.443 0.426 0.353 0.432

180 0.909 0.745 0.442 0.316 0.158 0.484

240 0.819 0.495 0.332 0.229 0.182 0.331

300 0.752 0.277 0.192 0.097 0.181 0.142

400 0.671 0.333 0.234 0.169 0.16 0.162

500 0.542 0.278 0.224 0.161 0.117 0.18

542 0.5 0.305 0.21 0.133 0.133 0.168 Converged position

600 0.452 0.245 0.233 0.146 0.131 0.098

900 0.338 0.179 0.137 0.092 0.07 0.067

1083.4 0.3 0.174 0.111 0.091 0.056 0.062 good position

1200 0.281 0.145 0.099 0.081 0.065 0.022

1500 0.308 0.164 0.123 0.018 0.067 0.047

1800 0.249 0.106 0.047 0.015 0.014 0.051

Figure 4.11: Dynamic Alignment Test Overall Position Error.

 75

Figure 4.12: Dynamic Align Test Directional Position Error.

Figure 4.13: Dynamic Alignment Test Orientation Error.

 76

Static Accuracy Test

In performing this test, the Pos RMS was converged to 0.3±0.05 m. The mean

values for both runs shows that for a Pos RMS of 0.291, the mean 2D Pos error is 0.058

m and mean orientation error value of 0.4 deg. Standard deviation values for most

datafields were lower due to static operation and already low Pos RMS (converged).

The results are summarized in Tables 4.9 and 4.10.

This test is a good measure of the antenna calibration. By looking at northing and

easting error values as heading changes in Table 4.11, the existence of offset distances

can be pinpointed. In this case, no pattern was evident since northing and easting errors

were consistent as the vehicle was rotated. This means that the relative to the

MAPS/Ashtech position, the Beeline converged from the same direction for both runs.

Further testing may reveal this behavior to be consistent and thus, can be anticipated and

even corrected.

 Table 4.9: Static Accuracy Test Mean Error Values.
RUN MEAN ERROR

Time
(sec)

PosRMS
(m)

2D Pos
(m)

Orient
(m)

Vel
(m)

North
(m)

East
(m)

Alt (m) Pitch
(deg)

Yaw
(deg)

1430.2 0.242 0.047 0.203 0.001 0.011 -0.046 0.015 0.182 0.091

1155.8 0.352 0.071 0.645 0.002 0.056 -0.003 0.089 0.12 -0.045

2586.0 0.291 0.058 0.401 0.001 0.031 -0.027 0.048 0.154 0.030

 Table 4.10: Static Accuracy Test Standard Deviation values.
RUN STANDARD DEVIATION (STDev)

Time
(sec)

PosRMS
(m)

2D Pos
(m)

Orient
(m)

Vel
(m)

North
(m)

East
(m)

Alt (m) Pitch
(deg)

Yaw
(deg)

1430.2 0.242 0.053 0.243 0.041 0.049 0.022 0.035 0.142 0.197

1155.8 0.352 0.059 1.04 0.059 0.028 0.052 0.038 0.837 0.551

2586.0 0.291 0.056 0.599 0.049 0.040 0.035 0.036 0.453 0.355

 77

 Table 4.11: Static Accuracy Test Directional Position Error.
Heading ERROR

Due Pos
RMS

3D
Pos

2D
Pos

North East Alt Orient
RMS

ATT
RMS

Ref.
Yaw

Pitch Yaw

North 0.333 0.111 0.085 0.013 -0.040 0.069 0.375 0.783 0.012 0.161 0.143

East 0.324 0.086 0.058 0.023 -0.030 0.054 0.251 0.760 90.012 -0.013 0.137

South 0.319 0.078 0.064 0.033 -0.023 0.015 0.374 0.770 180.037 0.037 -0.015

West 0.302 0.084 0.065 0.037 -0.022 0.041 0.294 0.723 270.051 -0.065 0.037

Dynamic Accuracy Test

In performing this test, the runs had to be of sufficient duration with the GPS Pos

RMS reamining at a good level. The two runs were performed at 2 different Pos RMS

levels (Pos RMS<0.2m, Pos RMS<0.4 m.). As shown in Tables 4.12 and 4.13, as

expected, the first run, with a mean Pos RMS of 0.186 m. showed good position accuracy

(mean 2D Pos error = 0.044 m) The second run, with Pos RMS of 0.312 m. had a higher

mean 2D Pos error of 0.069 m. Mean orientation error was slightly better for run 1 while

mean velocity error was comparable. Standard deviation values did not show significant

difference for both runs.

Figure 4.14 shows the autonomous field sweep with both system 2D position

traces (blue – MAPS/Ashtech; red – Beeline). Arrows indicate direction of the field

sweep. In Figure 4.15, the minor position convergence during sweep is characterized.

The individual positional errors (northing, easting and altitude) are shown in Figure 4.16.

It can be clearly seen that vehicle yaw has an effect on error, especially altitude. Lastly,

Figure 4.17 shows orientation error over time (and as a function of vehicle yaw – yellow

line).

 78

 Table 4.12: Dynamic Accuracy Test Mean Error and Standard Deviation.
RUN MEAN ERROR

Time
(sec)

PosRMS
(m)

2D Pos
(m)

Orient
(m)

Vel
(m)

North
(m)

East
(m)

Alt
(m)

Pitch
(deg)

Yaw
(deg)

Vel X
(m/s)

Vel Y
(m/s)

Vel Z
(m/s)

2963.6 0.186 0.044 0.268 0.027 0.033 0.029 0.071 -0.014 0.267 -0.011 0.001 -0.025
2307.8 0.312 0.069 0.448 0.024 0.003 0.066 0.035 0.389 0.219 -0.009 0.001 -0.023
5271.4 0.241 0.055 0.347 0.026 0.020 0.045 0.055 0.162 0.246 -0.010 0.001 -0.024

 Table 4.13: Dynamic Accuracy Test Standard Deviation Values.
RUN STANDARD DEVIATION (STDev)

Time
(sec)

PosRMS
(m)

2D Pos
(m)

Orient
(m)

Vel
(m)

North
(m)

East
(m)

Alt
(m)

Pitch
(deg)

Yaw
(deg)

Vel X
(m/s)

Vel Y
(m/s)

Vel Z
(m/s)

2963.6 0.186 0.045 0.316 0.119 0.021 0.04 0.079 0.107 0.297 0.047 0.086 0.068
2307.8 0.312 0.054 0.276 0.11 0.032 0.043 0.1 0.094 0.259 0.043 0.079 0.064
5271.4 0.241 0.049 0.298 0.115 0.026 0.041 0.088 0.101 0.280 0.045 0.083 0.066

Figure 4.14: Dynamic Accuracy Test Autonomous Field Sweep.

Ar

 79

Figure 4.15: Dynamic Accuracy Test Position Error.

Figure 4.16: Dynamic Accuracy Test Directional Position Error.

 80

Figure 4.17: Dynamic Accuracy Test Orientation Error.

Recovery Test

As described earlier, GPS loss will be simulated artificially by (1) Covering

Primary antenna and (2) Interrupting Transmission of Differential Corrections from Base.

Covering the primary antenna simulates GPS loss when the vehicle encounters situations

when direct satellite lock is comprised (like going underneath trees). By interrupting

transmission of differential corrections, several situations are simulated such as bad radio

link, vehicle going out of radio range, and temporary loss of GPS lock at the base station.

The position convergence of the Beeline must be reestablished. The output

position solution of the receiver goes through 4 phases.

Phase 1 : Pos Status (0) – No position, when locked satellites in view are less than 4.

Phase 2 : Pos Status (1) – Single Point; ≥ 4 locked satellites; Pos RMS = 120 – 50 m.

à Differential Corrections available

 81

Phase 3 : Pos Status (2) – Pseudorange Differential; ≥ 4 satellites; Pos RMS = 4 – 1.6 m.

Phase 4 : Pos Status (3) – RT-20 position; ≥ 4 satellites; Pos RMS = 5.5 – 0.04 m.

During normal operation, cold-boot alignment (initially turn on base station receiver,

then rover receiver) takes approximately 360 ± 20 sec to reach a converged solution (Pos

RMS of 0.5 m). Based on the static alignment test data, convergence while in Pos status

3 takes 260 sec. Thus, it takes 100 ± 20 sec to go from Pos status 0 to 3 during cold boot.

Table 4.14 shows the mean times to Pos status convergence.

1. Covering Primary Antenna

Covering the primary antenna resulted in the primary antenna losing satellite lock.

Once the number of satellites drops below 4, no position is reported (Pos status 0). This

occurred almost instantaneously with total antenna blockage (within 2 sec). This case

would be similar to the primary GPS antenna cable being disconnected. Once the cover

has been removed, it takes 18-23 sec for reacquisition of the satellites and subsequent

outputting of a single point position solution. From this point, the convergence follows

that described in Table 4.14.

 Table 4.14: Receiver Cold Boot.

Pos Status Time (sec) Remarks

0 à 1 20.7 ± 0.4 Must have at least 4 satellites in view

1 à 2 38.3 ± 5.2 Upon reception of differential corrections

2 à 3 43.5 ± 8.5 When RT-20 position is computed

0 à 3 102.5 ± 4.1 Total time to RT-20 position

3 à 0.5 m Pos RMS 259.8 RT-20 position convergence (carrier-phase)

 82

2. Interrupting Transmission of Differential Corrections

Differential corrections were suppressed by turning off the radio at the base station

end. To accurately follow the position solution degradation, the radio link was

suppressed for different time intervals. In RTK mode, the latest low-latency position

solution is reflected for up to 30 seconds after the reception of the last base station

observations. This means that withholding transmission of differential corrections for

over 30 seconds will result in the position solution reverting from RT-20 mode to either

single point or pseudorange differential mode. Thus, four time intervals were selected

(15 sec, 20 sec, 25 sec, and 30 sec). Table 4.15 summarizes the degradation of the Pos

RMS with increasing differential lag (time since last reported base station observations).

Figure 13 clearly shows the similar pattern of degradation regardless of the Pos RMS

value at the time of interruption.

Also, it should be noted that the Pos RMS values converge to about the same value.

After 30 seconds, the Pos RMS value degrades to 2.7-2.9 m. However, as soon as a new

set of differential corrections is received within 30 seconds, the Pos RMS reverts back to

the initial value (before the lag). It should be also noted that the base station receiver was

set up to output new satellite observation information every second. Thus, once the

differential lag exceeds a second, there is interruption in the base-rover receiver link. As

soon as the differential lag goes past 30 seconds, the position solution reverts from Pos

status 3 (RT20) to Pos status 1 (single point). Once radio link has been reestablished,

corrections are instantaneously processed and Pos status jumps to 2 (pseudorange). After

3-5 sec, position solution improves from Pos status 2 to 3 (RT20). The amount of time

past 30 seconds that the corrections have been compromised has a minor effect on the

 83

time it takes the receiver to revert back to RT20 position.

 Table 4.15: Recovery Test Pos RMS Degradation.

Diff. Lag Beeline Pos RMS (m)

sec 10 sec 15 sec 20 sec 25 sec 30 sec

0 0.491 0.467 0.530 0.779 1.071

2 0.492 0.468 0.531 0.779 1.071

4 0.501 0.474 0.537 0.782 1.073

5 0.512 0.493 0.543 0.786 1.076

6 0.53 0.513 0.555 0.792 1.079

8 0.594 0.582 0.597 0.816 1.094

10 0.702 0.616 0.671 0.859 1.125

12 0.732 0.784 0.929 1.170

14 0.886 0.936 1.029 1.242

15 1.027 1.093 1.288

20 1.612 1.533 1.644

25 2.171 2.177

30 2.887

Figure 4.18: Recovery Test Interruption of Differential Corrections.

Beeline Recovery Test
Pos RMS Degradation

0.0

0.5

1.0

1.5

2.0

2.5

3.0

0 5 10 15 20 25 30

Differential lag (sec)

P
os

 R
M

S
 (m

)

10 sec 15 sec 20 sec 25 sec 30 sec

 84

Comparatively, the Ashtech Z-12 GPS receiver takes a much faster time to

converge. Since, the Z-12 is an L1/L2 channel receiver, it can converge to as low as

0.02-0.03 m RMS in 180-240 seconds (cold boot), depending on satellite availability.

Applying the same radio link interrupting procedure, Table 4.16 shows the recovery

times for different interruption times.

 Table 4.16: Ashtech Z-12 GPS Receiver Recovery Data.
Differential Lag (sec) Recovery time (sec) RMS drop (m)

10 3 0.2 à 0.03

30 7 2.7 à 0.03

60 9 --

120 70 --

Analysis

The main objectives were to evaluate the system performance of the Novatel

Beeline GPS system and compare it to the MAPS/Ashtech Position system under normal

and less than ideal operating conditions. It has been established, based on manufacturer

performance specifications, that the Beeline is a less accurate system for measuring

position and orientation. Using the MAPS/Ashtech Pos as the reference system, position

and orientation differences (errors) were calculated while performing specific tests.

The first test involved static alignment. Because the MAPS needs to be aligned at

startup, initialization of the MAPS/Ashtech Pos system takes 10-16 minutes until Ready

status is reached and the Pos RMS drops to 0.22-0.28 m. This Pos RMS value is not an

absolute value and should only be taken as a relative indicator of the goodness of

solution. The Beeline, on the other hand, takes a longer time to align. It takes about 6

minutes to reach a converged position solution. However, for better results, and

 85

additional 6 minutes drops the Pos RMS to 0.3 m (with a relative mean error of 9.4 cm).

Orientation alignment necessitates line bias calibration which takes 18-20 minutes from

start-up. These long alignment times make using the Beeline disadvantageous when GPS

performance is compromised .

As expected, the Beeline Pos RMS converged to a value of 0.18-0.20 m. When

comparing this to the MAPS/Ashtech position, a mean error of 0.10 m. is observed. This

means that the MAPS/Ashtech position is between the true position and Beeline position.

It must be remembered that these error and RMS values are radial (circular) errors. With

the MAPS/Ashtech position converged, the Beeline approaches known vehicle position

to within 10 cm. Orientation values also approach known values to 0.3-0.5 deg (as

specified).

Dynamic alignment becomes a factor when there is degradation in the position

solution. Unlike the Ashtech Z-12, the Beeline receiver takes 3 to 6 times longer to

converge. Thus, when differential corrections or satellite lock are compromised, the

Beeline undergoes realignment, making accurate position availability longer. However,

with integration to an inertial measurement unit, the Beeline can be a vital part of low

cost, mid-level accuracy position system.

One important factor was antenna calibration. The vehicle axes were the main

alignment tool in setting up the antennas in order to make accurate output position

comparison possible. Great care should be taken in calibration. Performing an initial

static accuracy test allows one to check for consistent antenna offsets overlooked during

initial calibration. Here, no significant offsets were determined. Base station antenna

location is also crucial. Locating the antennas consistently each time increases

 86

differential position accuracy. Altitude, which is the least accurate position component,

should also be measured carefully. Since the NTV presently uses only 2D path planning

and navigation, base station altitude was never strictly monitored. Thus, the 2D position

errors showed more consistent behavior.

During field sweep, dynamic accuracy seemed to be affected by current azimuth

(yaw). 3D Pos errors were highest and lowest during turns into the longest straight

portions of the path. This was due to the exact same behavior of altitude in these zones.

As stated earlier, altitude is the least accurate of the position components and is thus

susceptible to larger variations. 2D Pos errors were less affected by yaw. However,

straight navigation did seem to decrease 2D Pos error. The sensitivity of the position data

to the yaw value may be attributed to the behavior of the yaw value itself. Yaw error

values were greatest during turning. There may be two reasons for this: (1) time lags in

the receiver data which may cause mismatch, (2) greater dynamics are experienced and

thus less accurate orientation solutions. Pitch, on the other hand, was not significantly

affected by vehicle yaw or heading.

Recovery tests showed how critical satellite visibility and differential corrections

reception are. Good GPS position and orientation is normally achieved with 6-8 satellites

locked and tracked. Operating with 4-5 satellites not only slows down alignment but also

presents a greater risk of dropping to a no position status. It was shown that covering the

primary antenna resulted in losing position and resetting to the normal alignment process

once antenna view is reestablished. For continuous real-time kinematic positioning, a

solid differential correction link must exist. Temporary loss of base corrections leads to

exponential degradation of the position accuracy and eventually to going out of carrier

 87

phase differential mode. For the Beeline system, a maximum of 30 seconds of

differential lag is allowed before position solution is compromised.

It should be noted that during testing, the Beeline receiver behaved inconsistently

in maintaining position status. Throughout the entire testing period, the position solution

would instantaneously degrade from RT20 (3) to pseudorange (2), therefore resetting the

alignment process. This behavior was later found out to be signaled by an

uncharacteristic jump in the differential lag without apparent disruption in the corrections

transmission. The Beeline was able to hold its RT20 position up to 90 minutes, but with

unpredictable occurrences of the status resetting. Thus, only limited good data was

collected.

Novatel engineers confirmed that the integrity of the position solution was greatly

affected by the solution rates. The RT-20 position update rate can go up to 5 Hz

maximum. However, at this speed, only a single binary log can be read without

expecting system failure. Since three separate ASCII data logs were read in, this was

putting computational stress on the remote RT20 receiver. To eliminate costly system

resets, a lower data rate (2 Hz) outputting binary logs should be used.

88

CHAPTER 5
HONEYWELL HG1700AG11 IMU / NOVATEL RT20 GPS

POSITIONING SYSTEM

 The exceptional performance of the Honeywell H-726 MAPS / Ashtech Z-12 GPS

integrated positioning system comes at a high cost. A second alternative is to utilize the same

concept of an INS/GPS integrated positioning system but with lower cost components. The

selection of the components hinges on three factors: (1) performance, (2) cost, and (3) ease of

integration. All three factors have to be weighed against the position system specifications and

requirements needed as implemented on the NTV.

Overall System Description

 The Inertial Navigation System (INS) is generally the most expensive and complex

system component. The high cost of an INS is due mainly to the integration of inertial sensors

(gyroscopes and accelerometers) with data processors to output position and orientation data

already in navigation coordinates. Choosing a bare Inertial Measurement Unit, a Honeywell

HG1700AG11, and developing the data processors, significantly reduces the INS cost. It must

be noted, though, that the inertial sensors used by the H-726 MAPS are more accurate and

precise than those of the HG1700AG11.

 The GPS receiver component selection is based first on its real-time kinematic position

accuracy. It has been established through previous testing and application that a positional

accuracy of less than 0.3 m is still acceptable for ground vehicle navigation. Also, extensive

 89

experience and familiarity are major reasons for using a Novatel RT-20 GPS receiver. In 1996,

Dean Hutchinson verified the performance of the RT-20 using a train track configuration.

Comparatively, the Ashtech Z-12 receiver was also tested and the results are in Table 5.1

[Hut97].

 Table 5.1: Train Track Testing Summary (Novatel vs Ashtech).

Pos Error Distance (cm) Novatel RT-20 Ashtech Z-12
Maximum 53.3289 78.1835
Minimum 0.2535 0.1477
Median 10.0218 8.7656
Mean 10.4141 9.9312

Std Deviation 5.2478 6.5358

 The integration of the IMU and the GPS involves six steps:

(1) IMU Interfacing (data reception, error checking and averaging)

(2) IMU Calibration

(3) IMU Initial Alignment

(4) IMU Navigation Solution

(5) External Kalman Filter (GPS aiding)

(6) POS Message Output and Interface

 Each step will be discussed in more detail in the succeeding sections.

 Honeywell IMU

 The Honeywell HG1700AG11 Inertial Measurement Unit is the low-cost solution for

tactical weapon applications. This advanced IMU is designed to meet a need for a low-cost,

 90

lightweight avionics system for installation in missiles, standoff weapons, torpedoes and

unmanned aerial vehicles.

 This strapdown IMU integrates the sensors and electronics, through the use of a

common dither approach, to minimize redundant physical and electrical interfaces. The result is

smaller size and reduced assembly cost.

System Specifications and Features

 Specifically, the HG1700AG11 is designed to minimize cost through the use of:

(1) Miniature, low-cost tactical ring laser gyro (GG 1308 RLG)
(2) AlliedSignal RBA-500 accelerometers
(3) Standard modules/components across a wide range of applications
(4) Common dither approach
(5) Integral isolation ring

A block diagram of the system is shown in Figure 5.1. System specifications are listed

in Table 5.2.

Figure 5.1: IMU Block Diagram [Hon00].

GG1308
Gyros

Serial I/O
AMRAAM
SDLC

Intel 87C 196KC
Micro Controller
A/D & Memory

RBA-500
Accelerometers

Gyro and Accel
Excitation &

Control

Discrete I/O
Built-in Test

+ 5 Vdc

+ 15 Vdc

- 15 Vdc

Rtn

Serial
Digital I/O

RS-422
I/O

Discrete
inputs

Discrete
outputs

 91

 Table 5.2: IMU System Specifications.

Parameter HG1700AG11
Dimension (in) 3.7 φ x 2.9 H

Volume < 33 in3
Weight < 2.0 lbs.
Power < 8 Watts

Bit Effectiveness > 92%
Life: operating > 10,000 hrs.
Life: dormancy > 10 years

Output Data Rate 100 Hz / 600 Hz
 ACCELEROMETER CHANNEL

Operating Range, ± g’s 37
Scale Factor, ft/sec 7.4506E-09

Scale Factor Accuracy, ppm 1 σ 300
Scale Factor Linearity, ppm 1 σ 500

Bias, milli-g’s 1 σ 1
VRE, micro-g’s max 500

Axis Alignment Stability, µrad 1 σ 500
Axis Alignment Stability, (non-orthogonality) µrad 1 σ 100

Output Noise, ft/sec (1 σ/10,000 samples) 0.008
Velocity Random Walk, ft/sec/rt-hr max 0.065

 GYRO CHANNEL
Operating Range, ± g’s 1074
Scale Factor, radians 1.1642E-10

Scale Factor Accuracy, ppm 1 σ 150
Scale Factor Linearity, ppm 1 σ to ± 800°/sec 150

Bias, °/hr 1 σ (Drift) 1
Axis Alignment Stability, µrad 1 σ 500

Axis Alignment Stability, (non-orthogonality) µrad 1 σ 100
Output Noise, µrad (1 σ/10,000 samples) 80

Velocity Random Walk, °/rt-hr max 0.125
 Source: [Hon00 & Hon99]

 92

IMU Power Requirements

The connections for the power and signal interface of the Honeywell HG1700 AG11

Inertial Measurement Unit are made through a 30 filter pin header. A flexible circuit assembly

interconnect hooks directly to the IMU at one end and a 25-pin D-sub at the other end. This

flexible cable (see Figure 5.2) minimizes the effective force loading on the IMU and providing

sufficient cable relief allows normal motion of the suspended mass (inertial sensor assembly).

Table 5.3 details the pin assignments for the IMU (Hon99).

 Table 5.3: IMU Header Pin Assignments.

Description IMU Pin 37P Dsub
+ 5 VDC 10 36 / 18
+15 VDC 1 1 / 20
- 15 VDC 21 35 / 17
GND 11 2 / 21
+ 5 VDC RETURN 9 19 / 37
+15 VDC RETURN 22 3 / 22
+ DATA (Hi) 4 26
- DATA (Lo) 24 25
+ Clock (Hi) 28 31
- Clock (Lo) 6 29

 Figure 5.2: IMU Flexible Circuit Assembly Interconnect.

 93

The HG1700AG11 IMU requires input power of +5V and ±15V. The details are

listed in Table 5.4. Power is supplied to the IMU through a DC-DC power converter that

takes in 12V from the system shelf and outputs +5V and ±15V.

Table 5.4: IMU Power Requirements.

 Starting Running
Voltage
(VDC)

Tolerance Max
Ripple
(mV

pk-pk)

Max
Current
(Amp)

Max
Starting
Duration
(msec)

Max
Starting
Duration
(msec)

Max
Current
(Amp)

Nominal
Current
(Amp)

Min
Current
(Amp)

+ 5 ± 5 % 80 0.80 40 25 0.65 0.35 0.252
+ 15 ± 5 % 100 0.70 500 60 0.35 0.25 0.16
- 15 ± 5 % 100 0.09 20 10 0.08 0.07 0.005

Sensor Axes and Mounting

 The Honeywell HG1700AG11 is designed primarily for use in guided missiles, hence its

cylindrical shape. Figure 5.3 shows how the sensor axes (X, Y, Z) are oriented.

In order to fix the IMU sensor axes by aligning them with the vehicle axes, an aluminum

mount is designed. This mount uses dowel pins precisely located to align the axes in the

following manner:

 IMU sensor X-axis ßà Vehicle X-axis (forward)

 IMU sensor Y-axis ßà Vehicle Y-axis (right)

 IMU sensor Z-axis ßà Vehicle Z-axis (down)

The mount is then fixed on the system shelf, which fits into the NTV rear cabinet. Also,

the flexible cable interconnect is affixed on the right side of the mount. Figure 5.4 shows the

mounted IMU set-up.

 94

Figure 5.3: IMU Sensor Axes.

Figure 5.4: Mounted IMU.

Z
(Yaw)

X
(Roll)

Y
(Pitch)

 95

Serial Communications Interface

The IMU provides an electrical serial data interface composed of four output and three

input differential signal pairs. It employs a SDLC (Synchronous Data Link Control) point-to-

point type protocol through an RS422 serial interface.

SDLC Type Protocol Messages

Each SDLC frame opens with a flag followed by the information that can include,

address, control and data fields that depend on the SDL protocol implementation used.

Following the information are two bytes that report the result of the Cyclic Redundant Check

(CRC). The CCITT polynomial used for the CRC is X16 + X12 + X5 + 1, preset to ones. A

closing flag follows the CRC and flags are transmitted continuously between frames. The

SDLC message format is described in Figure 5.5. Furthermore, Table 5.5 shows the SDLC

Bus characteristics (Hon99).

Figure 5.5: SDLC Message Format.

The IMU starts transmitting the data once the IMU host computer supplies the receive

clock to the IMU and the IMU performs the initialization sequence. The initialization sequence

shall be less than 400 milliseconds from power application.

Beginning Flag
01111110

8 Bits

Addres
s

8 Bits

Control
8 Bits

Information
Any Number

of Bits

Frame
Check
16 Bits

Ending Flag
01111110

8 Bits

Frame

1xClock

Data

 96

Table 5.5: SDLC Bus Characteristics.
Parameter Description
Shift Clock 1.0 MHz provided by the host (GCU)

Data Encoding NRZ (non-Return to Zero)
SDLC Mode Point-to_point

CRC CCITT
Data Ordering Least Significant (LS) bit first; LS byte first; LS 16 bit word first

Message Format Message from GCU to
IMU

Message from IMU to GCU

 NONE USED Description Bytes Value/Para
 Flag 1 7Eh
 IMU Addr 1 0Ah
 IMU Msg ID 1 Table 5.6
 Data n Table 5.7, 5.8
 CRC 2 16-bit poly
 Flag 1 7Eh

The IMU data messages are divided into 600Hz flight control data and 100Hz inertial

data. Table 5.6 gives the IDs for both message types. The start of the sequential transmissions

of the message ID number 1 are on the average 1/600 ± 0.01% seconds apart. The start of the

sequential transmissions of the message ID number 2 are on the average 1/100 ± 0.01%

seconds apart.

Table 5.6: IMU Data Message ID.
Transmitted Messages

IMU Msg ID Title Source Destination
1 Flight Control Data IMU System Processor
2 Flight Control and Inertial Data IMU System Processor

Tables 5.7 and 5.8 describe both flight control and inertial data messages. For the IMU

to begin transmitting output data, the IMU receive clock should be set to 1.0 MHz ± 2% by the

host computer through the RCV_CLK differential input pair. The RCV_CLK specifications

 97

are listed in Table 5.9. Data is transmitted through the SER_DATA differential input pair. The

Transmit Data lines are described in Table 5.10. All the tables are taken from the Honeywell

HG1700AG11 Reference Manual.

Table 5.7: Flight Control Data.
Item Parameter # Bytes LSB Value Units

1 Angular Rate Body X 2 2-20*600 rad/sec
2 Angular Rate Body Y 2 2-20*600 rad/sec
3 Angular Rate Body Z 2 2-20*600 rad/sec
4 Linear Acceleration Body X 2 2-14*600 ft/sec2
5 Linear Acceleration Body Y 2 2-14*600 ft/sec2
6 Linear Acceleration Body Z 2 2-14*600 ft/sec2
7 Status Word 1 2 - -
8 Status Word 2 2 - -

Table 5.8: Flight Control Data and Inertial Data.
Item Parameter # Bytes LSB Value Units
1-8 Flight control Data 16 - -
9 Delta angle - body X 4 2-33 radians
10 Delta angle - body Y 4 2-33 radians
11 Delta angle - body Z 4 2-33 radians
12 Delta velocity - body X 4 2-27 ft/sec
13 Delta velocity - body Y 4 2-27 ft/sec
14 Delta velocity - body Z 4 2-27 ft/sec

Table 5.9: Receive Clock (RCV_CLK) Line Specifications.
Parameter Characteristic
Signal Type Differential digital input; RS-422 compatible
Differential Input Threshold
Voltage

0.2 volts minimum

Input Resistance 180 ohms ± 5% due to 180 ohm termination resistor
between input pair

Period 1.0 µsec ± 2%
Pulse Width 0.5 µsec ± 2%
Rise Time IAW RS-422
Fall TIme IAW RS-422
Ground Resistance 5 V RTN

 98

Table 5.10: Transmit Data (SER_DATA) Line Specifications.
Parameter Characteristic
Signal Type Differential digital input; RS-422 compatible
High-Level Output Voltage (VOH) 2.5 volts minimum; IOH = -20 mA
Low-Level Output Voltage (VOL) 0.2 volts maximum; IOL = 20 mA
Load Impedance 180 ohms ± 5% due to 180 ohm termination resistor

between input pair
Period 1.0 µsec ± 2%
Pulse Width 1.0 µsec/bit
Rise Time IAW RS-422
Fall TIme IAW RS-422
Ground Resistance 5 V RTN

The latency between the time the sensor data is read from the internal IMU registers to

the start of transmission of the flight control and inertial message shall be 1.693 ± 0.005

milliseconds.

Sealevel ACB104 Serial Communications Controller Card

The serial communications controller card selected, the ACB104, has one high-speed,

RS-232/530/422/485 synchronous/asynchronous port capable of processing SDLC protocol

messages. The ACB-104 (see Figure 5.6) is PC-104 compatible and is the same serial card

used in interfacing with the H-726 MAPS. To accommodate the 1.0 MHz data sync speed, the

ACB104 will be configured to use Direct Memory Access, or DMA. DMA is a method of

data transfer that allows information to be transferred from memory to an I/O device, bypassing

the CPU, thus making it fast and efficient. Maximum data rates obtainable using DMA reach

1.5 to 2.0 MHz (Mbps). DMA also frees up the CPU to handle concurrent calculations and

processes. A DMA driver written specifically for the ACB104 which runs under DOS is used.

When run, the DMA driver loads a driver configuration file that includes all the driver specific

 99

settings. These settings are listed in Table 5.11. Additionally, the hardware jumper settings for

DMA mode are enumerated in Table 5.12.

Figure 5.6: Sealevel ACB-104.

 Table 5.11: SeaMAC DMA Driver Configuration.

Parameter Setting Comments
IRQ 5 Interrupt Channel

BaseIO 3E8 Base Address
TxDMA 3 Transmit Channel
RxDMA 1 Receive Channel

TxBufferSize 1024 Max Size of Transmit Frame in Bytes
RxBufferSize 1024 Max Size of Receive Frame in Bytes

TxBuffers 2 No. of Transmit Frames in queue
RxBuffers 30 No. of Receive Frames in queue
TxClock BRG Transmit clock set to Baud Rate Generator
RxClock BRG Receive clock set to Baud Rate Generator
Divisor 0x00 Clock Divisor
DPLL NRZ Non Return to Zero
SWInt 65 Software Interrupt

NodeAddress None 0 - 0xff or None

 100

 Table 5.12: ACB-104 DMA Jumper Settings.
Jumper Header Function DMA Setting

E1 DMA Enable A
E2 DMA Channel (half-duplex) 11
E3 DMA Channel (full-duplex) None
E4 RS-485 Mode None
E5 Transmit Clock None
E6 IRQ Mode T
E7 IRQ Selection 5

IMU Data Processor (IDP)

The IMU Data Processor is in charge of reading the raw data, converting it to usable

values, checking for bad data, averaging the data, and outputting it to the primary computer

(POS). The Data Processor (DP) is a PC-104 stack (Pentium 133 MHz, see Figure 5.5) with

a 640 MB Calluna hard drive. As described earlier, the IMU is interfaced to the DP through an

ACB-104 serial communications card. The data flow in the IDP is shown in Figure 5.7.

Raw Data Conversion

Upon establishing a solid data link between the DP and IMU, the next step is to

process the incoming data. First, the inertial data messages are selected from the data stream

by checking the message type byte. Coming in at 100 Hz, the inertial data message is then

parsed and the actual data values are calculated by multiplying the raw data with the LSB

values described in Table 5.8. The method for bit conversion is as follows:

Datafield Value = base10(Byte1) + (base10(Byte2))16 2 + (base10(Byte3)) 16 4

+ (base10(Byte3))16 6 [5.1]

 101

Figure 5.7: IMU Data Processor (IDP) Data Flow.

The output of each of the six IMU data fields are represented in Table 5.13. Their

corresponding value ranges are shown in Table 5.14.

Direct Memory Access
(DMA - 1 MBps)

Convert Data (hex to base 10)

Error Checking

Averaging (100 Hz down to 12.5 Hz)

IMU Raw Data Message
(Inertial message, 100 Hz)

Alignment / Navigation
GPS Integration

PMP
(Single Board
Computer)

IDP
(PC104 stack)

Select Inertial Data Message
(100 Hz)

Build ASCII message (COM1 out)

POS Report Message

 102

 Table 5.13: IMU Data Field Representation.
 IMU Data Field Values (4 bytes)
Maximum Value (hex) ffffffff
Maximum Value (b10) 4,294,967,295
Minimum Value (b10) 0
Positive Range Min Val ßà ((Max Val – 1) / 2)
Negative Range ((Max Val + 1) / 2) ßà Max Val
 b10 – base 10 ; hex - hexadecimal

 Table 5.14: IMU Data Field Value Range.

Datafield [over 0.01 sec] Minimum Value Maximum Value
Delta Theta (X, Y, Z) [rad] - 0.25 [-14.32 deg] + 0.25 [+14.32 deg]
Delta Velocity (X, Y, Z) [ft/sec] - 16.0 [-50 g] + 16.0 [+50 g]
* Conversion :
 Delta Theta = (base 10 value) * 2-33
 Delta Velocity = (base 10 value) * 2-27

Error Checking

 The next step is to perform error checking. This prevents unwanted occurrences of bad

or corrupted data. Acceptable data ranges are set by minimum and maximum threshold values

for both delta theta and delta velocity (see Table 5.15). Since under normal conditions, the

IMU will be subjected to accelerations and torques significantly below their maximum

measurable limits, the threshold values are manually determined to match extreme operating

conditions based on the type of intended application. Data that exceed the threshold values will

be thrown out and replaced by data from the previous time step.

 Table 5.15: IMU Data Field Limit and Threshold Values.
Data Field IMU Limit Threshold Value TV / period
∆ Theta (rad) ± 0.1745 ± 0.1 ± 10 rad/sec
∆ Theta Dot (rad) - ± 0.04 ± 4 rad/sec
∆ Velocity (ft/sec) ± 16.1 ± 8 800 ft/sec2
∆ Velocity Dot (ft/sec) - ± 1.0 100 ft/sec2

 103

Data Averaging

 To reduce the computational burden of the navigation processor, the data is averaged to

a rate fast enough to satisfy autonomous navigation requirements yet slow enough not to

compromise the computational efficiency of the integrating computer. Another factor is the

allowable output data rate from the data processor. Using an RS-232 serial output line (at

19200 baud), IMU messages are output up to 12.5 Hz. Comparatively, the MAPS currently

outputs messages at 12.5 Hz.

The method of averaging involves calculating the total value for each data field for every

8 data points. These total values are then divided by the average data period (1/12.5 Hz =

0.08 sec) to get average values for omega (angular velocity) and acceleration. Acceleration is

converted from feet/sec2 to m/sec2.

IMU Output Message

To make the IMU data usable for navigational computation, the data is converted to

angular rates and linear accelerations. As pointed out earlier, the IMU outputs such data in

standard message sets at a rate of 12.5 Hz. The format of the IMU message output from the

data processor is given in Table 5.16.

 Table 5.16: IMU Output Data Message Format.
Field Description Value

1 Header $IMU
2 Omega X (rad/sec) 12.345678
3 Omega Y (rad/sec) 12.345678
4 Omega Z (rad/sec) 12.345678
5 Acceleration X (m/sec2) 12.345678
6 Acceleration Y (m/sec2) 12.345678
7 Acceleration Z (m/sec2) 12.345678

Sample Message: $IMU,-4.234926,0.002433,0.526343,1.434125,0.000043,9.784353

 104

 The IMU output data message is sent out through the COM1 serial port of the PC104

stack. The serial connection is set at 19200 baud and is fed into the COM2 serial port of the

Main POS computer (SBC).

 The software code running on the IMU Data Processor stack is shown in Appendix B.

Novatel RT-20 GPS

 Novatel’s RT-20, real-time kinematic Differential GPS (DGPS) receiver, delivers one

meter performance at power-up. After a brief period (as less as 3 minutes), robust and reliable

double differencing techniques provide real-time accuracies of up to 20 centimeters or better.

The primary advantage of the RT-20 (see Figure 5.8) is that it fills the accuracy gap

between pseudorange positioning and fixed ambiguity carrier phase positioning. The RT-20 has

been used extensively by CIMAR and AFRL, employing it in systems such as the ordnance-

detecting ASV.

 Figure 5.8: Novatel PowerPak RT-20 GPS receiver.

 105

System Specifications

 The specifications for the Novatel PowerPak RT-20 are given in Table 5.17.

 Table 5.17: Novatel PowerPak RT-20 Specifications.

Parameter Specification
Position Accuracy, standalone SA on 40 m CEP
Position Accuracy, standalone SA off 15 m CEP
Position Accuracy, differential RTCM 0.75 m CEP
Position Accuracy, differential RT-20 0.20 m CEP

post-processed ± 5 mm + 1 ppm
Time to First Fix, cold start 67 sec (typical)
Re-acquisition, warm start 1 sec (typical)

Data rate, Raw measurements 20 Hz
Data rate, position 10 Hz
Data rate, RT-20 5 Hz

Time accuracy, SA on 250 ns RMS
Time accuracy, SA off 50 ns RMS

Velocity accuracy, standalone 0.20 m/s RMS
Velocity accuracy, differential 0.03 m/s RMS

Measurement precision: C/A code 10 cm RMS
L2 P code 40 cm RMS

L1 carrier phase single channel 3 mm RMS
L1 carrier phase differential channel 0.75 mm RMS

L2 carrier phase single channel 5 mm RMS
L2 carrier phase differential channel 4 mm RMS

Dynamics, acceleration 6 g
Dynamics, velocity 515 m/s

Physical Measurements 20.8 cm x 11.1 cm x 4.7 cm
Weight 1 kg

Temperature, operating -40 °C to +65 °C
Temperature, storage -40 °C to +85 °C

Humidity ≤ 95% non-condensing
Communications Interface RS232/RS422/NMEA

Baud Rate 300 to 115,200 bps
strobe I/O 5 signals, TTL level

Communications connector 2 x DB9P
Strobe I/O connector DB9S
Antenna connector TNC female
Power connector 2.1 mm threaded plug (center +)

Input voltage range 10-36 VDC
Power consumption 8 watts (typical)

 106

 Figures 5.9 and 5.10 illustrate typical performance curves for position accuracy

convergence for both static and kinematic modes. It must be noted that the Novatel ProPak

Beeline described in Chapter 4 uses the same RT-20 millenium GPS card and thus shares the

same performance specifications. Also, in testing the beeline, the static and kinematic

convergence statistics are verified. As explained in the previous chapters, CEP refers to

Circular Error Probable which represents an easting-northing circle where 95% of all 2D

position errors fall into.

Figure 5.9: Typical RT-20 Convergence - Static Mode.

 107

Figure 5.10: Typical RT-20 Convergence - Kinematic Mode.

System Features

(1) 20-cm real-time kinematic (RTK) accuracy with “on-the-fly” initialization

(2) L1 C/A code and carrier phase tracking

(3) 12 channel “all in view” parallel tracking

(4) Fast reacquisition

(5) Patented Narrow Correlator tracking technology

(6) Multipath Elimination Technology (MET)

(7) 1 PPS output

(8) Event marker

 108

(9) RTCM SC104 v 2.1/2.2, RTCA SC159

(10) GPSolution - Windows compatible graphical user interface (GUI)

 The DGPS set-up includes two RT-20 receivers each connected to a Novatel 501

GPS antenna w/ choke ring and powered by a 12 VDC source. The rover receiver (mounted

on the vehicle) receives differential corrections from the base receiver through RF. The RF link

is established with two Breezecom wireless ethernet radios. The distance between the rover

and the base receivers is called the baseline. To assure solid data link and better GPS

performance, a baseline of less than 200 meters is maintained at all times. A typical DGPS set-

up is depicted in Figure 5.11.

Figure 5.11: Differential Global Positioning System (DGPS) Set-up.

Message Sets

 For the purpose of IMU integration, GPS real-time kinematic position data is needed.

The essential RT-20 output data is contained in the PRTKA/B log. This can either be read in

Rover Station
(NTV)

Base Station

Differential
Data

GPS
Satellites

 109

as an ASCII-type or binary message. For ease of data processing, logs will be read in ASCII

(PRTKA).

 The PRTKA log contains the best available position computed by the receiver, along

with three status flags. It reports other status indicators, including a differential lag, which is

useful in predicting anomalous behavior brought about by outages in differential corrections.

Table 5.18 enumerates the individual fields in the PRTKA log [Nov97].

Table 5.18: PRTKA Log.
Field # Field Type Data Description Example

1 $PRTKA Log header $PRTKA
2 week GPS week number 872
3 sec GPS time into the week (in seconds) 174963.00
4 lag Differential lag in seconds 1.000
5 #sv Number of matched satellites 8
6 #high No. of matched sats above RTK mask angle 7
7 L1L2 #high No. of matched sats above RTK with L1L2 7
8 latitude Latitude of position in deg (+ North) 51.11358042429
9 longitude Longitude of position in deg (+ East) -114.043580067
10 height Height of position in meters above sea level 1059.4105
11 undulation Geoidal separation in meters -16.2617
12 datum ID Current datum 61
13 lat σ Standard deviation of latitude in meters 0.0096
14 lon σ Standard deviation of longitude in meters 0.0100
15 height σ Standard deviation of height in meters 0.0112
16 soln status Solution status 0
17 rtk status RTK status 0
18 posn type Position type 4
19 idle Percent idle time (%) 42
20 stn ID Reference station identification 119
21 *xx Checksum *51
22 [CR][LF] Sentence terminator [CR][LF]

Sample Message:
$PRTKA,872,174963.00,1.000,8,7,7,51.11358042429,-114.043558006710,1059.4105,-
16.2617,61,0.0096,0.0100,0.0112,0,0,4,42,119*51[CR][LF]

 110

System Integration

 Once the inertial and GPS components have been selected and their data

interfaces have been specified, system integration follows. The integration becomes an

essential step since in a very real sense the INS and the GPS are now mutually aiding,

each covering the other’s shortcomings and benefiting the overall system performance.

The INS keeps position, velocity and attitude (PVA) current, while the GPS provides

external measurements to the Kalman filter (KF) thus producing the most probable

position (MPP) in the overall navigation solution.

 There are basically two approaches to system integration, “loosely-coupled” and

“tightly-coupled”. In a loosely integrated GPS/INS system, GPS position, rather than

raw output, is input into the navigation computer KF. Because the GPS receiver already

has a KF of its own, the system has a filter-driving-filter arrangement. This is susceptible

to stability problems when the KF gains were changed, or “tuned” to boost performance.

These gains are considered “loose”, that is, they are left alone. The system’s merit is that

the GPS could be operated in a stand-alone mode.

The INS/GPS system has evolved into a “tightly coupled” architecture where the

navigation processor KF accepts raw inputs from both the GPS and IMU. There is no KF

in the GPS processor. Unmodeled errors from the GPS KF are eliminated, and this

allows the KF gains to be tuned within smaller limits [Bie99].

Since the Novatel RT-20 GPS receiver already possesses its own KF, the

IMU/GPS system is “loosely-coupled”. This also lends to the fact that one of the main

motivations of the development of this system is to replace the existing Honeywell

MAPS. The advantage of a “loosely-coupled” system is it allows flexibility in

 111

interchanging the components. When less expensive, higher accuracy components

become available, system integration can be done with minimal change to the system

design. Table 5.19 lists the advantages and disadvantages of a loosely-coupled as

compared to a tightly-coupled system.

 Table 5.19: Loosely-coupled Integration.

Advantages Disadvantages
1. Lower level modularity – easily change

KF to model different IMUs (with

different output data variables).

Primary KF tailored to IMU type.

2. Able to directly compare MAPS with

IMU + primary KF using the existing

POS external KF set-up. Cross

comparison by switching components.

3. Faster development – since integration

with GPS is already done by the

secondary KF. Work needed only to

develop primary KF for IMU.

1. Less efficient – since primary KF into

secondary KF - redundant operations in

position, orientation and velocity

conversion and error determination.

Increased software complexity.

2. Need more processing power – primary

KF processes running at 100 Hz and

secondary KF running at 10 Hz. Need

separate CPUs (added problem of

communication between CPUs).

3. Higher cost stemming from additional

hardware.

System Configuration

Once the integration approach has been identified, the next step is to apply it in

both hardware and software. The general system configuration is shown in Figure 5.12.

 112

Figure 5.12: IMU/GPS System Configuration.

Hardware

As explained earlier, the IMU is interfaced to an IMU data processor in the form

of a PC104 stack running under MS-DOS. To handle system integration, a second CPU

is used. This is explained in more detail in the succeeding section on ‘POS Main

Processor’.

The remaining hardware requirements include individual DC-DC converters for

the IMU/IMU Data Processor (DP) and SBC and a Freewave Wireless Transceiver (radio

modem) for reception of DGPS base corrections. The input voltage to the system shelf is

12 VDC. Main power is first routed to the SBC, radio modem and GPS receiver. A

secondary switch turns on the IMU and the IMU DP. This enables the user to debug the

system independently as well as reset the IMU without rebooting the main POS computer

 113

(SBC). Figures 5.13 and 5.14 illustrate the electrical diagram and hardware layout of the

POS system shelf. Table 5.20 provides a breakdown of the power requirements.

Figure 5.13: POS System Shelf Electrical Diagram.

GPS

Radio
GPS

IMU PC104
 IDP

DC-DC
CONV

DC-DC
CONV

SBC

POS MP

HD

SW2 SW1

- 15 VDC

GND (CMN)

+ 12 VDC

+ 5 VDC

+ 15 VDC

to MAIN Power

Wiring Legend:

 114

 Table 5.20: POS System Shelf Power Requirements.
System Component Voltage (VDC) Current (Amp) Power (W)

SBC (POS MP) - CPU + 5 V 3.5 18
 - HD + 5 V 0.7 3.5

 - PC104 Ethernet card + 12 V 0.5 6.0
PC104 (IMU DP) + 12 V 0.6 7.2

+ 15 V 0.25 3.75
- 15V 0.07 1 IMU
+ 5V 0.35 1.75

Novatel PowerPak RT-20 GPS + 12 V 0.65 8.0
Freewave Data Transceiver + 12 V 0.5 6.0

POS System Total + 12 V 5.0 60.0

Figure 5.14: POS System Shelf Hardware Layout.

IMU

NovatelRT-20

Freewave
Radio

DC-DC
Converter

DC-DC
Converter

PC-104
IDP

SBC
PMP

 115

Software

 The SBC is configured to run under the Red Hat Linux 7.1 Operating System.

The software design uses the same standard approach in defining position process source

code and library files. The main differences from the previous approach similar to the

MAPS/Ashtech POS system include:

1. Component messages are JAUGS compatible as defined by the latest document

version. Position system has component ID 38 [Joi00].

2. Instead of position system messages being output directly to the Mobility Control

Unit (MCU), a Message Routing System (MRS) allows higher level system

components to access position data without interrupting other systems.

3. The position system processes are lumped together in a single POS directory where

the main program, pos.c, spawns off the individual process threads. These processes

call functions contained in process libraries described below:

pos : This is the main program which takes charge of starting and monitoring all the

processes threads performed by the IMU, GPS and Filter programs. All the component

messages are also handled here.

ImuLib : This handles all communications between IMU Data Processor (PC104) and

the POS main computer. This includes receiving and processing of IMU raw acceleration

and angular velocity data, receiving of GPS position updates and system commands.

Also, initial alignment and navigation solution algorithms process IMU data for sending

out to the Kalman filter.

 116

gpsLib : This block reads in GPS position messages from the Novatel RT-20 and stores

the data in global variables. Also, a 1 PPS (Pulse Per Second) signal is used to reset the

SBC system clock every minute, thereby synchronizing it with GPS time.

filterLib : This part starts off the external Kalman filter individual processes in sequence

while receiving inputs from the IMU (navigation solution) and GPS. The output position

and orientation data is then translated to the vehicle control point.

posConsole : This program is outputs data on screen. It shows Filter, GPS, and IMU

position and orientation data, as well as system and component status.

mrs : This handles all data transferred to and from the POS and the network. This is run

in the background separately prior to start of the pos main program.

 The software structure is graphically represented in Figure 5.15.

Figure 5.15: SBC Software Structure.

main

updateState readGps pos

imuLib filterLib gpsLib libraries

Process
threads

pos.c

mrs

 117

POS Main Processor (PMP)

The POS Main Processor is in charge of integration of the IMU and GPS. A

Winsystems EBC-TX Plus Single Board Computer (SBC) with a 333 MHz AMD

processor, 128Mb of RAM, and a 30 GB hard drive provides it more computing power to

handle multiple tasks of running the navigation solution, Kalman filter, and data message

input/output. The system specifications of the SBC are given in Table 5.21. In addition,

Figure 5.16 shows the data and process flow through the PMP.

Figure 5.16: POS Main Processor (PMP) Data and Process Flow.

Bias,

Coarse Alignment
(analytical)

Fine Alignment
(Kalman Filter 1)

Navigation Solution

GPS Data

Navigation

IMU Data Output

Manual Calibration

GPS Integration
(Kalman Filter 2)

POS Main
Processor (PMP)

(SBC)

IDP (PC104 stack)

POS Report

 118

 Table 5.21: Winsystems EBC-TX Plus SBC.
Parameter Specification

CPU 333 MHz AMD Triathlon
RAM 128 MB SDRAM

Hard Drive Sandisk 350MB Flashdisk
Features onboard Ethernet, digital I/O, video card

Ports 4 COM ports, 1 parallel port
PC104 Expansion Slot RTD CMT104 HD carrier module

Input Voltage +5 VDC, +12VDC (for PC104 expansion slot)
Input Current 3.5 A (CPU), 0.7 A (HD),

Power 25 W
Size 8” x 5” x 2” (w/ HD)

IMU Calibration

To accurately interpret the raw data output from the IMU, a manual calibration

procedure should be performed. Eventhough the IMU has already been calibrated at the

factory, manual calibration ensures continued accurate performance by measuring current

inherent accelerometer biases and gyroscope drifts. These calibration coefficients (biases

and drifts) will then be applied to the raw data output to obtain values for delta velocities

and delta angles closer to the true va lues.

This manual calibration procedure should be performed carefully, paying close

attention to specific details. It should be noted that the accuracy of the calibration will

greatly affect the way the IMU data is used for alignment and eventually the performance

of the system. Routine re-calibration should be done to make sure system performance

does not degrade over time.

Sources of Error

 There are different types of errors associated with ring laser gyros (RLG) and

accelerometers. These errors are essentially categorized into errors associated with

 119

sensor linearity, forces affecting sensor operation, a fixed sensor output shift (fixed bias)

and random offsets (random bias). The bias and drift specifications of the sensors refer to

the fixed bias component. These fixed biases are to be determined during manual

calibration. Table 5.22 compares the fixed biases of the HG1700AG11 IMU with the

H-726 MAPS.

 Table 5.22: Fixed Biases of the HG1700AG11 IMU and H-726 MAPS.

Bias Type HG1700AG11 H-726 MAPS
Accelerometer Bias 1 mg (0.01 m/sec2) 0.03 mg (0.0003 m/sec2)

Gyro Drift 1.0 °/hr (5 x 10-6 rad/s) 0.01 °/hr (5 x 10-8 rad/s)

It is obvious from above that the quality of the sensors of the MAPS is far

superior to those of the IMU. It should be noted that orientation directly affects position.

Therefore, the accuracy of the IMU is greatly diminished compared to the MAPS.

It should also be noted that the other sources of error contribute significantly to

sensor performance. Of main concern is the random bias errors. For an RLG, the

random bias term yields random walk. Random Walk (RW) is the root-mean square of

angular output which grows with the square-root of time. While for an accelerometer,

random bias is caused by instabilities within the sensor assembly [Tit97].

Random bias becomes critical because of its unpredictability. These are

manifested in the sensor output as noise. Smoothing can be done to lessen the effects of

noise, however, care must be taken not to smoothen out the dynamics within the signal.

An important characteristic of inertial navigation systems is the presence of

Schuler oscillations. Professor Max Schuler defined the Schuler pendulum as a mass

suspended by a string with length equal to the radius of the Earth. The string would

normally define the direction of the local vertical. However, since the Earth rotates, the

 120

support point is moved from rest with an acceleration a, and the string will be deflected

by an angle, θ = −tan (/)1 a g . The effect of the Schuler pendulum causes oscillations in

the position and orientation output of the inertial navigation system. The Schuler

frequency is calculated as

ω s R g= =(/) .0 000124 rad/s (5.2)

and the Schuler period is

Ts
s

= =
2

84 4
π

ω
. min. (5.3)

Therefore, the Schuler oscillations will occur every 84.4 minutes. Schuler tuning

improves system performance by accurately indicating the vertical with respect to gravity

on a moving vehicle navigating close to the surface of the earth.

 Table 5.23 provides a list of the error propagation equations for a single sensor

axis as a function of the different error sources. It is apparent that over long periods of

time, several Schuler periods or more, the errors in a simple navigation system are

bounded as a result of the Schuler tuning. This is true for all sources of error with the

exception of the drift of the gyroscope which gives rise to a position error which

increases linearly with time, δω yb R t0 , in addition to an oscillatory component. This

makes the gyroscope drift the key error source [Tit97].

 121

 Table 5.23: Single Axis Error Propagation.
Error Source Notation Position Error

Initial Position error δx0 δx0

Initial Velocity error δv 0 δ
ω

ω
v

t
x

s

s

sin

Initial Attitude error δθ 0 δθ ω0 0 1R ts(cos)−

Fixed Accelerometer Bias δf xb δ
ω

ω
f

t
xb

s

s

1
2

−









cos

Fixed Gyroscope Drift δω yb δω
ω

ωyb
s

s

R t
t

0 −








sin

Geodetic Constants

 To accurately model the gravity attractions at any point on the Earth, the reference

Earth model known as World Geodetic System of 1984 (WGS 84, see Figure 5.17). The

cross section of the mean sea level surface of the Earth is called the geoid. The geodetic

vertical is everywhere normal to the reference ellipsoid [Cha97].

Figure 5.17: Geometry of WGS 84 Reference Earth Model.

 122

The important WGS 84 geodetic constants are given below:

 sec/rad10292115.7 5v
ie

−×=ω , earth rotation rate (+ccw about the north axis)

 2s/m7803267715.9g = , equatorial value of gravity

 a = 6388137 m , reference earth ellipsoid semiminor axis

 e = 0.08181919 , earth eccentricity

 GM 2314 s/m10986005.3 ×= , gravitational mass constant

Coordinate Systems

Local Geodetic Vertical System

 In order to make sense of the data output from the IMU sensors, a suitable

coordinate system is selected. In the case of ground vehicle navigation, the position

coordinates are normally in geodetic latitude, geodetic longitude and height (above mean

sea level) and measured in the Local Geodetic Vertical (LGV) coordinate system. LGV

coordinates are readily available when using GPS and is currently the standard used in

the NTV. The LGV (sometimes called geographic) coordinate system is illustrated in

Figure 5.18 [Cha97].

Other coordinates systems that are to be referred to in this text include Earth-

Centered Inertial (ECI), Earth-Centered Earth-Fixed (ECEF), and Local Geocentric

Vertical (LGCV).

 123

Figure 5.18: Geometry of LGV coordinate system.

where,
φ - geodetic latitude
λ - geodetic longitude
origin - center of mass of the Earth
n - axis in the direction of geodetic north
w - axis perpendicular to the meridian plane containing the vehicle,
 directed toward the west
u - axis directed outward along the local geodetic vertical
 passing through the vehicle (IMU ceneter of mass)

Local Geocentric Vertical (LGCV) coordinate system

 The LGCV is similar to the LGV coordinate system except that the vertical axis is

coincident with the local geocentric vertical. This coordinate system is denoted by the

subscript or superscipt c. This is illustrated in Figure 5.19

 124

Figure 5.19: Geometry of LGCV coordinate system.

where,
φc - geocentric latitude
λc - geocentric longitude
origin - center of mass of the Earth
N - axis in the direction of geodetic north
W - axis perpendicular to the meridian plane containing the vehicle,
 directed toward the west
U - axis directed outward along the local geocentric vertical
 passing through the vehicle (IMU ceneter of mass)

Earth-Centered Inertial (ECI) coordinate system

The orientation of the coordinate axes is arbitrary. At any time, after navigation

begins, the ECI coordinates remain in a fixed orientation in inertial space while the origin

moves with the Earth. This coordinate system is denoted by the subscript or superscipt i.

Earth-Centered Earth-Fixed (ECEF) coordinate system

The ECEF coordinate system coincides with the conventional terrestrial reference

system (CTRS). The origin is at the center of mass of the Earth. The coordinates remain

fixed relative to the rotating Earth. The ECEF frame rotates relative to the ECI frame at

 125

the rotation rate of the Earth, ωie. This coordinate system is denoted by the subscript or

superscipt e.

x - axis in the mean astronomic equatorial plane orthogonal to the z axis
 and in the BIH zero meridian plane
y - axis in the mean astronomic equatorial plane, 90° east of the x-axis.
z - axis coincides with the conventional terrestrial pole (CTP, rotation axis
 of the WGS 84 ellipsoid)

Coordinate Rotation Matrices

 In order to transform from one coordinate system to another, a rotation matrix is

defined. The following rotation matrices are to be used in the following sections.

A. ECI to ECEF

 R i
e =

cos sin
sin cos

ω ω
ω ω

ie ie

ie ie

t t
t t

0
0

0 0 1
−

















 (5.4)

B. ECI to LGV

 R i
v =

− −
−

















cos sin sin sin cos
sin cos

cos cos sin cos sin

λ φ λ φ φ
λ λ

λ φ λ φ φ

i i

i i

i i

0 (5.5)

where λi = λ + ω ie t

C. ECI to LGCV

 R i
c =

− −
−

















cos sin sin sin cos
sin cos

cos cos sin cos sin

λ φ λ φ φ
λ λ

λ φ λ φ φ

i
c

i
c c

i i

i
c

i
c c

0 (5.6)

 where φ c is the geocentric latitude

 126

D. ECEF to LGV

 R e
v =

− −
−

















cos sin sin sin cos
sin cos

cos cos sin cos sin

λ φ λ φ φ
λ λ

λ φ λ φ φ
0 (5.7)

Coordinate Axes Rotation

 Normally, the convention for body and navigation coordinates are expressed as

follows:

 Vehicle (IMU) ß à Body CS ß à LGV CS
 Forward X North
 Right Y East
 Down Z Down

 However, the succeeding equations for calibration, coarse and fine alignment, and

the navigation solution use a different convention and are based from Chatfield.

 Vehicle (Nav) ß à Body CS ß à LGV CS
 Forward X North
 Left Y West
 Up Z Up

 Therefore, the IMU data is first manipulated once it is received on the PMP. The

coordinate axes are rotated and the calibration coefficients are added in the following

manner:

 Acc X = (Acc Out X) + (bias X) (5.8)

 Acc Y = - (Acc Out Y) + (bias Y) (5.9)

 Acc Z = - (Acc Out Z) + (bias Z) (5.10)

 Omega X = (Omega Out X) + (drift X) (5.11)

 127

 Omega Y = - (Omega Out Y) + (drift Y) (5.12)

 Omega Z = - (Omega Out Z) + (bias Z) (5.13)

where,
 Acc Out - output accelerations parsed from the IMU data message.

 Omega Out - output angular velocities parsed from the IMU data message.

It should be remembered that the rotation of the body coordinate axes is only for

the purpose of maintaining consistency with the convention used in the equations for

alignment and navigation solution (Nav CS). However, once the position, velocity and

attitude (PVA) have been calculated, the output PVA data will be converted back to the

original body (IMU CS) coordinate system. As explained earlier, this puts the data back

into the axes convention currently being used by the NTV.

Steps

1. Preliminary System Check

 The first step is to ascertain if all the sensors are working properly. A quick

check is to boot up the IMU and monitor the output. The key is to move the IMU

exclusively in one direction (whether linearly along the axis or rotating it about an axis)

and quickly see if the data is moving in the right direction. Take note of the x, y and z

axes of the IMU. For the accelerometers, it is advisable to point each positive axis in the

down direction with respect to the earth, making sure it is stationary and expect values

close to the known gravity value (approximately 32 ft/sec2).

2. Obtaining Known Reference

 Next, a suitable known reference should be used. For reference position, one can

survey in a point where the calibration will be performed. Here, calibration is performed

 128

inside the CIMAR lab with known geodetic coordinates (Latitude = 29.646416 deg,

Longitude = -82.349352 deg, Altitude = 12.34 m.). For reference orientation, either an

Inertial Navigation System (INS) or an accurate compass can be used. In our application,

the Honeywell MAPS is a stand-alone INS that gives highly accurate orientation. Setting

up the MAPS inside the lab (see Figure 5.20), the IMU must then physically referenced

with the MAPS, using its machined mounting surface as the planar guide. Initially, the

MAPS must be aligned, then oriented such that roll, pitch and yaw values are zero (due

North and level). By doing such, the extraction of the biases become much simpler.

 Aside from the MAPS, other devices for accurately measuring orientation can be

used. A digital compass can serve this purpose.

Figure 5.20: Using MAPS as Calibration Reference.

3. Performing Tumble Rotation Schedule

 A Tumble Rotation Schedule consists of rotating the IMU in various fixed

orthogonal positions (e.g. due North, due East, etc.) as well as mid positions (45 degrees

 129

between 2 orthogonal axes) . A Tumble Platform allows one to precisely rotate the IMU

axes. A complete tumble rotation schedule (31 point) will provide excellent calibration

data. But in the absence of a tumble platform, the MAPS is again used as a reference.

Due to limitations in calibration set-up, the IMU will only be rotated about its z-axis

(yaw), orienting it in four positions (yaw = 0, 90, 180, 270 degrees). During each tumble

rotation, static data will be collected for 60-120 seconds. A list of the tumble rotations

and the data sets associated with them were made.

4. Calculating Calibration Coefficients

 With the collected data, the calibration coefficients will be extracted. This is done

by comparing the data with the true values for specific force (accelerations) and angular

velocity at each orientation. The known values for specific force are based on the gravity

vector while the known angular velocities are components of the earth rotation rate. For

instance, with the z-axis of the IMU aligned with the z-axis of the MAPS, the true z value

is +32.0 ft/sec2 (or 9.8 m/sec2). The coefficients are calculated by subtracting the data

value from the true value.

Calib Coeff (Bias/Drift) = Data Value - True (Known) Value (5.14)

When performed correctly and precisely, the calibration coefficients should be

consistent for each sensor axis regardless of the orientation. But due to real-world

imperfections, averaging the coefficients is sufficient enough for good results. In the

case of the IMU, biases are normally in the range of 0.001 to 0.008 m/sec2, while drifts

are in the range of 0.00001 to 0.00008 rad/sec, which are consistent with specifications.

Random bias values range from 0.005 to 0.01 m/sec2 while gyro random drift values

 130

range from 0.0001 to 0.0004 rad/sec. These are alarmingly high considering that they are

5 to 10 times larger than the fixed values. Therefore, manual calibration marginally

improves the performance of the IMU but is still a necessary process. The detailed results

are given below in Table 5.24.

 Table 5.24: 4-Point Tumble Rotation Schedule.
Yaw Drift (rad/sec) Bias (m/sec2)

(Degrees) X-axis Y-axis Z-axis X-axis Y-axis Z-axis

0 -1.3754E -05 6.9595E-06 1.0389E-05 5.3854E-03 -5.6746E -03 -8.3522E -03

90 -1.4612E -05 4.9548E-06 7.7260E-06 -5.1076E -02 4.9301E-02 -7.3802E -03

180 -1.5618E -05 6.1590E-06 6.2344E-06 2.4916E-02 4.9491E-02 -7.3175E -03

270 -1.2671E -05 6.6012E-06 4.9628E-06 -1.0366E -02 -2.1958E-04 -7.3906E -03

Average -1.4164E -05 6.1686E-06 7.3280E-06 -7.7851E -03 2.3224E-02 -7.6101E -03

5. Testing through Alignment

 After calculating the six calibration coefficients, the easiest way to verify its

accuracy is to do an analytical coarse alignment. Still using the MAPS as the reference,

orient the IMU is oriented exactly the same way (roll, pitch and yaw equal zero). The

coarse alignment code is then run. It should give roll and pitch error values in the range

of ± 0.5 degrees, while the yaw error value of ± 3 degrees. Several coarse alignment runs

were made until the system output appeared stable and accurate. One can also orient the

IMU with different yaw values (e.g. x-axis pointed due north, yaw = +90 degrees) and

check accuracy.

Alignment

Alignment of a strapdown IMU is the process of establishing the rotation matrix

that relates the vehicle body coordinates and the navigation coordinates. In this case, the

navigation coordinates refer to the Local Geodetic Vertical (LGV) coordinate system.

Also, the vehicle body coordinates coincide with the roll, pitch and yaw axes.

 131

The process of alignment is accomplished computationally by computing the

elements of the rotation from the vehicle body axes to the navigation coordinates based

on known reference vectors. After completion of the initial alignment and initialization

of the state vector, the IMU is now ready for the navigation phase. (Cha97)

The essential output of the alignment phase is the initial rotation matrix from the

body to navigation coordinates (Rb
v
o), which is one of the inputs (together with initial

latitude, longitude and altitude) at the start of the navigation phase. During navigation,

the rotation matrix is continuously updated based on the output of the gyros and

accelerometers.

It is important to stress the role of alignment in the entire inertial navigation

process. With proper instrument calibration, the accuracy of the alignment process

ensures an excellent starting point for the navigation phase. Conversely, inaccurate

alignment will lead to erroneous navigation.

There are two phases to alignment: the analytical coarse alignment and the fine

alignment. The analytical coarse alignment of a strapdown inertial system consists of

determining the rotation matrix that would convert the output of the gyros and

accelerometers in body coordinates to navigation coordinates matching it to known

reference vectors. The fine alignment phase uses the initial rotation matrix and static data

fed it into a Kalman Filter to progressively eliminate misalignment errors. A summary of

the process time for the entire alignment sequence is given in Table 5.25.

 Table 5.25: Initial Alignment Process Breakdown.

Alignment Phase Time (min) Roll Accuracy
(deg)

Pitch Accuracy
(deg)

Yaw Accuracy
(deg)

Coarse 2 5.0± 5.0± 0.1±
Fine 6-8 2.0± 2.0± 5.0±

 132

For alignment to take place, a “Static” condition of the IMU must be satisfied.

“Static” here refers to the IMU passing certain data conditions representing zero motion.

Since the IMU is comprised of gyroscopes and accelerometers, the raw data output is

passed through two checks, using threshold values set by the user.

Static Condition Determination

Since even slight IMU movement will cause misalignment errors, it is key to set

data conditions that would best represent actual operation. To accomplish this, data was

collected during various levels of IMU stability. Data was then analyzed as to the ranges

they fall into, and their corresponding RMS (Root Mean Square) values.

In this case, the acceptable level of instability is the condition with the IMU on

the Navigation Test Vehicle (NTV) with the engine, generator and all the other vehicle

systems running and fall under the “vibrating mode”. The condition where unwanted

passenger or wind loading is experienced is termed “shaking mode”. It is clear from

Figure 5.22 that movement shifts the Omega RMS (ωRMS) data curve upwards. However,

Figure 5.23 shows that the Acceleration RMS (aRMS) values have greater oscillation with

IMU movement. A safe threshold value of 0.05 rad/sec is chosen for Omega RMS,

falling in between “vibrating” and “shaking” conditions. For the Acceleration RMS, a

threshold range of 9.76 to 9.84 m/sec2 is set. For data to be considered “static”, it must

pass both checks.

Check 1 : sec

rad
RMSRMS 05.0

threshholddata
<ω<ω

Check 2 :
threshhold_upperdatathreshhold_lower RMSRMSRMS a ω<<ω (2

data
2 sec

m
RMSsec

m 84.9a76.9 <<)

 133

Figure 5.22: Omega RMS in Static, Vibrate and Shaking Mode.

re 5.22 Acceleration RMS in Static, Vibrate and Shaking Mode

Figure 5.23: Acceleration RMS in Static, Vibrate and Shaking Mode.

Analytical Coarse Alignment

The first phase of alignment requires a simple approach and is computationally

efficient. While the vehicle is stationary, static data is collected from the IMU.

However, even during static conditions, brief or instantaneous movement may occur. A

RMS Acc

9.6

9.65

9.7

9.75

9.8

9.85

9.9

9.95

1 0

10 .05

1 5 9 13 17 21 25 29 33 37 41 45 49 53 57 61 65 69 73 77

Data points

R
M

S
 A

cc
 -

 m
/s

ec
^2

stat ic vibrate shake

threshold_upper

threshold_lower

RMS

RMS

a

a

−

−

RMS Omega

0

0.05

0.1

0.15

0.2

0.25

1 5 9 13 17 21 25 29 33 37 41 45 49 53 57 61 65 69 73 77

Data points

R
M

S
 O

m
eg

a
- r

ad
/s

ec

static vibrate shakethresholdRMSω−

 134

movement limit of 3 consecutive seconds of non-static data resets the alignment process.

Otherwise, static data is collected for 120 seconds. The collected data is then averaged.

The next step involves calculating the initial rotation matrix, Rb
v

0
, from the

following equation:

Rb

v = M −1 Q (5.15)

 where, Rb

v - rotation matrix from body to navigation coordinates
 M - reference vector matrix

 M =



















ω×
ω

Tv
ie

v
a

Tv
ie

Tv
a

)g(

g
 (5.16)

 where, ga

v - actual apparent gravity vector in navigation coordinates

 ga

v = g - ×ωv
ie ×ωv

ie Pv (5.17)

 g =



















− 2s
m801.9

0
0

 (5.18)

 ω ie

v - Earth-rate vector

 ω ie
v = ω ie

















+

+

φ

φ

sin
0

cos

 (5.19)

where ω ie = 7.292115 x 10 −5 rad/s
 - Earth rotation rate (+ ccw about north)

φ - latitude

 Q - IMU data matrix

 135

 Q =
















ω×−
ω
−

=
















ω×
ω

T
bb

T
b

T
b

T
bb

T
b

T
b

)S(

S

)g(

g
 (5.20)

 where, Sb - accelerometer cluster output in body coordinates

 Sb =
S
S
S

x

y

z

b

b

b

















 (5.21)

 ω b - gyroscope output in body coordinates

 ω b =
ω
ω
ω

x

y

z

b

b

b

















 (5.22)

 Substituting,

Q =
− − −

− − −

















S S S

S S S S S S

x y z

x y z

z y y z x z z x y x x y

b b b

b b b

b b b b b b b b b b b b

ω ω ω
ω ω ω ω ω ω

 (5.23)

The accelerometer and gyroscope output are already adjusted using the calibration

coefficients previously determined. Once the rotation matrix has been calculated, the

orientation angles for roll, pitch, and yaw can be extracted. The rotation matrix is then

passed on to the second phase, the fine alignment.

Since,

Rb
v =

cos cos sin cos cos sin cos sin cos sin sin
cos sin sin sin cos cos cos sin sin sin cos

sin cos cos cos

θ ψ φ θ ψ φ ψ φ θ ψ φ ψ
θ ψ φ θ ψ φ ψ φ θ ψ φ ψ

θ φ θ φ θ

sin
sin

sin

− −
− −

−
















 (5.24)

 136

The orientation angles are expressed as follows:

 roll, φ = tan-1 (Rb

v
3 2, / Rb

v
3 3,) (5.25)

 pitch, θ = sin-1 (- Rb

v
3 1,) (5.26)

 yaw, ψ = tan-1 (Rb

v
2 1, / Rb

v
1 1,) (5.27)

Fine Alignment

 Because of the imperfect accelerometer and gyro outputs used in the analytical

alignment computations, an additional dynamic second-stage alignment computation

procedure is generally required. The output of the three accelerometers and three gyros

can be used to provide a computational self-alignment procedure to reduce the difference

between the actual and analytically computed rotation [Cha97].

Error Equation Derivation

 The fine alignment procedure is based on Britting and Palsson [Bri70] with the

variables modified to maintain consistency with the navigation convention used by

Chatfield [Cha97]. It is assumed here that an initial estimate of the rotation matrix is

available from the analytical coarse alignment tha t corresponds to a small angle

misalignment of the computed and actual reference frame. Fine or corrective alignment

consists of detecting the error angles between these two frames via the processed

accelerometer and gyro signals and generating a signal to the transformation computer in

order to reduce these angles as close to zero as possible. The rotation matrix is updated

using the relation

 &R Rb
v

b
v

vb
b= Ω (5.28)

 137

where Ω vb
b is the skew-symmetric matrix of the angular velocity ω vb

b that is fed to the

attitude computer. This angular velocity signal would ideally be

 ω ω ωvb
b

v
b

d
b= + (5.29)

 where ω v
b is the computed correction signal (or command rate)

 ω d
b is the disturbance represented by vibrations in the body frame

 ω ω ω ωd
b

d
b b

ie
b bE u= − + (5.30)

where uω b contains the gyro drift

Eb is defined as the skew symmetric matrix of the misalignment angles between the

actual and computed body frames.

 Eb
z y

z x

y x

=
−

−
−

















0
0

0

ε ε
ε ε
ε ε

 (5.31)

 where ε x , ε y , and ε z are the misalignment angles in the body x, y, and z axes

Substituting the skew symmetric form of Eq. (5.30) into Eq. (5.28) yields

 &R R R R R ub
v

b
v

v
b

b
v

d
b

b
v

ie
b

b
v b= + − +Ω Ω ΩδΩ (5.32)

where δΩ ie
b is the skew symmetric form of Eb

ie
bω

After manipulation, Eq. (5.30) simplifies to

 &R R R R R uv
v

b
v

b
v

v
b

b
v

ie
b

b
v b= − +Ω ΩδΩ (5.33)

Using the fact that vv
v~ EIR −= and &E R E Rv

b
v b

b
v= , Eq. (5.33) reduces to

 &E ub
v
b b

ie
b= − − +Ω Ω δΩ (5.34)

 &E uv
v
v v

ie
v= − − +Ω Ω δΩ (5.35)

The vector form of Eq. 5.35 is

 138

 vv
ie

vvv
v

v u εΩ−ω−=ω+ε& (5.36)

In order to drive Ev to zero, ω v
v is chosen to be a linear function of Ev .

 vv
ie

vvv u~K εΩ−ω−=ε+ε& (5.37)

 where δε+ε=ε vv~ , is the misalignment measurement error

In order to measure v~ε , its three components can be derived from the horizontal

components of g and the computed west component of ω ie
v .

since Ev
u w

u n

w n

=
−

−
−

















0
0

0

ε ε
ε ε
ε ε

 (5.38)

 and]SuSS[R)EI(SR)EI(SRS vv
d

v~

0
v
b

vb
c0

v
b

vb
c

v
b

v ++−=−== (5.39)

 where S gv = [; ;]0 0

 Sd
v is the disturbance accelerations

 uSv is the accelerometer uncertainties

 0
v
bR is the initial rotation matrix

Combining Sd
v and uSv into δSv , and substituting Eq.(5.38) into Eq. (5.39)

 v~vv SS)EI(=− (5.40)

 v~vvv SSES =− (5.41)

 v~vv~v SSS
g
0

0

E ∆=−=















 (5.42)

 wanwan gSgS ε−≈δ+ε−=∆ (5.43)

 nawnaw gSgS ε≈δ+ε=∆ (5.44)

 139

Similarly, using the equation for computed west rate of the Earth rate,

)tan(cos)tan(cos nuiewnuiew φε+εφω≈ωδ+φε+εφω=ω∆ (5.45)

Given Eqs. (5.43), (5.44) and (5.45),

a

w
n g

S∆
≈ε (5.46)

a

n
w g

S∆
−≈ε (5.47)

 φ
ω
ω∆

−φ
∆

≈ε sectan
g
S

ie

w

a

w
u (5.48)

The error equation can be put into the form

)~(K)K()~(KK~K vvvv
ie

vvvvv
ie

vvv
ie ε−ε−ε+Ω−=ε−ε−ε−εΩ−=ε−εΩ−=ε& (5.49)

which is in the general form, &x Fx u= +

Data Pre-Filtering

 In order to eliminate the effects of data noise, pre-filtering becomes a necessary

step before calculating the misalignment errors. Using a stripped-down version of a

Kalman filter with a steady-state Kalman gain matrix, the output data is smoothened out

eliminating unwanted spikes. The Kalman gain matrix is determined as a function of the

signal to noise ratio and is specific to the sensor outputs. This kind of Kalman filter is

termed a scalar-gain interpretation.

~ ~
S Sb sgi b

− = Φ (5.50)

~ ~

(
~

)S S K S Sb b pf b bs
= + −− − (5.51)

 where ~Sb
− is the previous state estimate of the data

 140

 Sb is the current state estimate of the data

 Φsgi I= , is the state transition matrix since the model = 0

Kpfs
 is the pre-filter Kalman gain matrix for the accelerometer output

 K
K

K
K

pf

s

s

s

s
=

















0 0
0 0
0 0

 (5.52)

The system was tuned and sK was determined to equal 0.05.

 Thus, the pre-filtered output of the accelerometer data is given by ~Sb . The next

iteration uses its last ~Sb and assigns it to the past state estimate, ~Sb
− , and the whole

process is repeated. Similarly, the same equations apply for pre-filtering the output of the

gyroscopes. It should be noted that the Kalman gain matrix may not necessarily be the

same for both sensors. In the case of the IMU, the Kalman gain matrices used are the

same. Once the data has been pre-filtered, it can now be used in a Kalman filter that

determines the error angles. Figure 5.23 shows the raw data and pre-filtered data

outputs using the accelerations measured in the Z axis.

 ~ ~ω ωb sgi b
− = Φ (5.53)

 ~ ~ (~)ω ω ω ω
ωb b pf b bK= + −− − (5.54)

 141

Figure 5.23: IMU Raw Data vs. Pre-filtered Data.

Error Angle Matrix Calculation

 Eq. (5.36) is the error angle matrix, Ev . A Kalman filter uses the error

differential equation to solve for the optimal estimates. By selecting an arbitrary value

for the error covariance, R, then using the closed-form solution of the Ricatti equation,

the Kalman gain matrix, K, is calculated. And by discretizing ()Ωie
v K− and K, we get

Φ and K d . These calculations are done off- line using Matlab and later plugged into the

PMP code in order to make the fine alignment process more computationally efficient.

The constant values for Φ and K d can now be used to determine the error angle matrix,

Ev , by letting the error angles converge to certain values.

 S I E R Sv v
b
v b= −()

~
0

 (5.55)

 where Rb
v

0
 is the initial rotation matrix output from coarse alignment

Acc Z (m/sec2)

Raw Data Pre-Filtered Data

 142

















ω×
ω=

)g/()g/S(
g/
g/S

Z
vv

v

v

 (5.56)

 e ev v−

= Φ (5.57)

where ev
n

w

u

=

















ε
ε
ε

is the error angle vector

~
Z ev=

−

 (5.58)

K K Z Zd∆ = −(~) (5.59)

e e Kv v= +
−

∆ (5.60)

Using Eq. (5.55), we build the error angle matrix, Ev . The error angles converge

to certain values. The speed and accuracy of convergence is dependent on the Q selected.

Finally, the resulting rotation matrix after fine alignment,
′v

bO
R is equal to:

v
b

vv
b 00

R)EI(R −=
′

 (5.61)

This new initial rotation matrix is then passed on as the initial orientation

condition entering the navigation phase. Using Eqs. (5.25), (5.26), and (5.27), we obtain

converged values for roll, pitch, and yaw. Based on specifications and preliminary tests,

typical convergence values are to within ±10. deg for the yaw and ± 0 5. deg for the roll

and pitch. Given ideal static conditions, the fine alignment stage runs from 6-8 minutes.

 143

Navigation Solution

 Once the initial rotation matrix has been determined through the two stage alignment

process and the calculated calibration coefficients, inertial navigation can begin. The navigation

solution uses initial position, velocity and attitude (PVA) inputs to initialize the states, and

propagates these states using the measurements from the IMU sensors.

 Local Geodetic Vertical (LGV) coordinates are convenient for land-based navigation

because the velocity in the state vector is equivalent to the ground speed vector. The

equations of motion are derived from a pair of vector differential equations of position and

velocity. The equations are then put into state-space form.

 Navigation is divided into two components: updates for (1) position and velocity (PV),

and (2) attitude (A). The PV states are directly affected by the rotation matrix (or direction

cosine matrix), Rb
v . However, using the gyro outputs, the rotation matrix is propagated

independently from position and velocity. The block diagram of the LGV frame mechanization

is shown in Figure 5.24 [Tit97].

 In practice, the navigation computer, attitude computer and gravity computer are all part

of the Navigation Processor (NP). In the IMU/GPS, the NP is one of the major blocks of the

POS Main Processor (PMP). Similarly, the accelerometer and gyro measurements are fed into

the NP together and are processed by separate parts of the navigation code.

 144

Figure 5.24: Local Geodetic Vertical (LGV) Frame Mechanization.

Position and Velocity

 First, all the succeeding equations are taken from Chatfield, et al. [Cha97]. The

concept lies on resolving the measured specific forces by the accelerometers in the navigation

frame (LGV), integrating it once to give velocity and twice to give position. In order to set-up

the equations in LGV, the state vectors are defined in ECEF coordinates. The position and

velocity vectors are denoted by P and V respectively.

Pe = R i
e Pi (5.62)

solving for Pi and differentiating with respect to time

&Pi = Ω ie

e R e
i Pe + R e

i &Pe (5.63)

note that i

e
e
ie

e
i RR Ω=& and Ω ie

e is the skew-symmetric form of ω ie
e

Resolution of
Specific Force
Measurements

Body Mounted
Accelerometers

Body Mounted
Gyroscopes

Attitude
Computer

Navigation
Computer

Coriolis
Correction

Gravity
Computer

Initial Estimates
Position & Velocity

Initial Estimates
of Attitude

Sb Sv

Rb
v

Rb
v

0

ga
v

ω ωie
v

ev
v+

Pv
0

V v
0

∑ ∑

Calibration

Coarse Alignment

ωib
b

Fine Alignment

 145

a second differentiation with respect to time yields

&&Pi = R e

i (&&Pe + 2Ω ie
e &Pe + Ω ie

e Ω ie
e Pe) (5.64)

next, substituting (5.59) into&&Pi = g i + S i

&&Pe + 2Ω ie

e &Pe + Ω ie
e Ω ie

e Pe = ge + Se , where Se is the accelerometer output (5.65)

or in terms of vector cross products

&&Pe + 2ωie

e x &Pe + ωie
e x ωie

e x Pe = ge + Se (5.66)

 now transforming it into LGV coordinates

Pv = R e

v Pe (5.67)

V v = R e

v &Pe (5.68)

differentiating with respect to time and substituting into (5.64)

R i

v &&Pi = &V v + (Ω iv
v + Ω ie

v) V v + Ω ie
v Ω ie

v Pv (5.69)

&V v + (Ω iv

v + Ω ie
v) V v + Ω ie

v Ω ie
v Pv = R c

v gSHC
c + R e

v ge
mod + Rb

v Sb (5.70)

substituting (5.67) into derivative of Pv with respect to time

&Pv = V v - Ω ev

v Pv (5.71)

(5.70) and (5.71) form the state-space form for LGV coordinates

The position vector, Pe , is given by

Pe =
x
y
z

















≈ -
GM
P2

()cos cos
()sin cos

(())sin

R H
R H

R e H

N

N

N

+
+
− +

















λ φ
λ φ

φ1 2

 (5.72)

Substituting Eq. (5.6) & Eq. (5.72) into (5.67) yields the position vector in LGV coordinates.

 146

Pv =
P
P
P

n

w

u

















 =
−

− +

















R e

R e H

N

N

2

2 2

0
1

sin cos

(sin)

φ φ

φ
 (5.73)

 Equation (5.68) provides no information on longitude because the position vector is

completely determined by two components lying on the longitudinal plane. Consequently, a

separate integration must be performed to obtain λ. The geometric representation of Pv is

shown in Figure 5.25.

 Expressions for prime vertical radius or curvatures (or great normal), RN , and the

meridian radius, RM , are given below.

R
a

e
N =

−(sin)1 2 2
3
2φ

 (5.74)

R
a e

e
M =

−

−

()

(sin)

1

1

2

2 2
1
2φ

 (5.75)

R R
e

eN M=
−

−
(sin)1

1

2 2

2

φ
 (5.76)

Expanding Eq. (5.68) yields

V v =
V
V
V

n

w

u

















 =
()&

() & cos
&

R H
R H

H

M

N

+
− +

















φ
λ φ (5.77)

 147

Figure 5.25: Components of position in LGV coordinates.

Using Eq. (5.77), we derive the expressions for geodetic latitude, longitude and height

(altitude).

H H V dk k ut

t

k

k

+ = +
+

∫1
1

τ , geodetic height (5.78)

φ φ τk k
n

M
t

t V
R H

d
k

k

+ = +
+

+

∫1
1

 , geodetic latitude (5.79)

λ λ
φ

τk k
w

N
t

t V
R H

d
k

k

+ = −
+

+

∫1
1 sec

 , geodetic longitude (5.80)

 Using Figure 5.25, an expression is derived for the rotation matrix from LGCV to LGV,

R c
v .

φ c

φ

C

B

z

PU

P

R ABN =
PH BC=
P

Equatorial Plane

n

PN

P

u P

A

 148

R c
v

c c

c c

=
− − −

− −

















cos() sin()

sin() cos()

φ φ φ φ

φ φ φ φ

0
0 1 0

0
 (5.81)

R
P

P P

P P
c
v

u n

n u

=
−

















1
0

0 1 0
0

 (5.82)

 It can also be seen from Figure 5.25 that the Earth rotation rate in LGV coordinates is

given by Eq. (5.19).

 The angular rate of the position vector is defined as the tangential velocity divided by the

magnitude of the position vector. Hence, using Eq. (5.77)

ω
λ φ

φ
λ φ

φ

ev
v

w

N

n

m

w

N

V
R H

V
R H
V

R H

=

















=

−
+

+

−
+























& cos
&

& sin
tan

 (5.83)

Adding Eqs. (5.19) and (5.78) we get

ω ω ωiv
v

ie
v

ev
v= + (5.84)

Combining Eqs. (5.65) and (5.66) into state-space form yields

&

&
()

() mod

V
P I

V
P

R R R
g
g
S

v

v
iv
v

ie
v

ie
v

ie
v

iv
v

ie
v

v

v
c
v

e
v

b
v SHC

c

e

b









 =

− + −
− −


















 +



























Ω Ω Ω Ω
Ω Ω 0 0 0

 (5.85)

 The inertial navigation system block diagram is shown in Figure 5.26 [Cha97]. The

differential equation as represented in state-space is given by:

&X AX BU= + (5.86)

Y = CX (5.87)

 149

where,

&X =
&

&
V
P

v

v











 A =
− + −

− −











()
()

Ω Ω Ω Ω
Ω Ω

iv
v

ie
v

ie
v

ie
v

iv
v

ie
vI

 X =
V
P

v

v











 B =
R R Rc

v
e
v

b
v

0 0 0











 U =
g
g
S

SHC
c

e

b
mod

















 C = I

Figure 5.26: Inertial Navigation System Block Diagram.

 The above differential equation can be solved using a fourth-order Runge-Kutta

integration method. This process is outlined in Appendix A.

∫

A

B C

X 0

AX

X BU U Y &X
+

 150

Orientation

 The new orientation angles are a function of the current rotation matrix, Rb
v . The Rb

v

matrix defines the rotation that is used transform the specific force vector, Sb , into navigation

(LGV) coordinates, Sv . This matrix propagates in accordance with the following equation.

 &R Rb
v

b
v

vb
b= Ω (5.88)

where Ω vb
b is the skew-symmetric form of ω vb

b , the body rate in LGV coordinates. This is

derived by subtracting the estimates of the components of navigation frame rate, ω iv
v , from the

measured body rates, ω ib
b . In Eq. (5.74), ω iv

v is obtained by summing the Earth’s rotation rate

with respect to ECI frame and the turn rate of the navigation frame with respect to the Earth.

Substituting this yields

ω vb
v = ω ib

b - Rv
b (ω ie

v +ω ev
v) (5.89)

 The skew-symmetric form of ω vb
v is given by

 Ω vb
b

z y

z x

y x

b b

b b

b b

=
−

−
−

















0
0

0

ω ω
ω ω
ω ω

 (5.90)

 where,

 ω
ω
ω
ω

vb
v

x

y

z

b

b

b

=

















 (5.91)

 In order to propagate the rotation matrix, Rb

v , quaternions will used. The quaternion

attitude is a four-parameter representation based on the idea that a transformation from one

 151

coordinate frame to another may be effected by a single rotation about a vector [Tit97].

Quaternions are computationally efficient since they do not involve any trigonometric functions

and they follow a product rule for successive rotations. However, the major disadvantage of

quaternions is the lack of intuitive physical meaning.

 The individual quaternion elements may be derived using the orientation angles extracted

from the rotation matrix. Roll (φ), pitch (θ) and yaw (ψ) values are calculated using Eqs.

(5.25), (5.26), and (5.27).

q1 2 2 2 2 2 2
= +cos cos cos sin sin sin

φ θ ψ φ θ ψ
 (5.92)

q 2 2 2 2 2 2 2
= −sin cos cos cos sin sin

φ θ ψ φ θ ψ
 (5.93)

q 3 2 2 2 2 2 2
= +cos sin cos sin cos sin

φ θ ψ φ θ ψ
 (5.94)

q 4 2 2 2 2 2 2
= +cos cos sin sin sin cos

φ θ ψ φ θ ψ
 (5.95)

Once the quaternion vector has been calculated, the differential equation is set-up as follows:

& . ()q b c dx b y zb b1 05= − + +ω ω ω

& . ()q a d cx b y zb b2 05= − +ω ω ω

& . ()q d a bx b y zb b3 05= + −ω ω ω

& . ()q c b ax b y zb b4 05= − − −ω ω ω (5.96)

 Similarly, the above differential equation will be solved using a fourth-order Runge-

Kutta integration method. This is also described in Appendix A.

 152

 Once the new quaternion state has been determined, the elements are used to calculate

the new rotation matrix, Rb
v ' . The matrix representation is:

R
q q q q q q q q q q q q

q q q q q q q q q q q q
q q q q q q q q q q q q

b
v =

+ − − − +
+ − + − +
− + − − +

















() () ()
() () ()
() () ()

1
2

2
2

3
2

4
2

2 3 1 4 2 4 1 3

2 3 1 4 1
2

2
2

3
2

4
2

3 4 1 2

2 4 1 3 3 4 1 2 1
2

2
2

3
2

4
2

2 2
2 2
2 2

 (5.97)

 It should be noted that all the quaternion values used in (5.92) are taken from the results

of the quaternion integration and thus define the new quaternion vector. The new Rb
v will then

be used calculate the new position and velocity on the next data time interval.

 An important check is maintaining orthogonality of the rotation matrix at all times. Non-

orthogonality leads to numerical errors and consequent degrading of orientation, position and

velocity calculation. To ensure orthogonality, a simple process of extracting the orientation

angles using Eqs. (5.25), (5.26), and (5.27) is followed by putting those same angles back into

Eq. (5.24) to get the orthogonalized rotation matrix.

DGPS Aiding and Extended Kalman Filter

 The role of differential GPS (DGPS) position aiding in improving INS/GPS integrated

system using low to medium performance IMUs cannot be understated. In the case of the

IMU/GPS system, the position updates, when available, bounds the position, velocity and

orientation errors allowing successful long-term operation.

 One of the goals in INS testing is to determine the influence of sensor and initialization

errors on system position and velocity accuracy. This is extremely difficult if a wide variety of

different types of measurements are used. A Kalman filter is a natural solution to this problem

 153

because it provides a statistical weighting and error propagation algorithm. Following an

external “fix”, the filter updates position and velocity on the basis of statistically weighting the

covariance of the external measurement against the covariance of the estimated state of the

system. Between updates the filter propagates estimates of the navigation solution and estimates

of modeled sensors. Thus the KF is an intuitive approach that supplies an optimal estimate of

the navigation system errors and provides estimates of all modeled navigation sensor error

sources that have significant correlation times [Bie99].

 Differential GPS (DGPS) with its high accuracy now becomes the source of position

updates. The DGPS position updates are made to stored “waypoints” used by the KF to

compute and apply corrections to the navigation equations. These position updates reduce

attitude error as well as removing position error, thus slowing error growth between

measurements. Velocity is used by the KF to update the range rate predicted by the navigation

equations and thus to prevent buildup of position errors [Bie99].

 The Kalman Filter used for the IMU/GPS is the same linear discrete KF used by the

MAPS/GPS [Wit96]. It would have been advisable to use a KF with error equations that are

tailored to the raw outputs of the accelerometers and gyros. However, the existing KF

performs the exact same function effectively by eliminating errors through constant updates of

the position, velocity and orientation in LGV coordinates.

 We define an augmented state vector for the kth integration step that includes errors in

position, position rate and tilt or platform attitude. The general equation for the state vector

error is given by

 154

∆ ∆
~ ~

(
~

)X X K Zk k k k k= + −− −Z (5.98)

where

 ∆
~

&
&

&
X

H

H
k

n

e

d

=



































δφ
δλ
δ
δφ
δλ
δ
φ
φ
φ

 , estimated state vector error after the KF update

 ∆~X k
− , estimated state vector error just before the KF update

 ~Z H Xk k k
− −= ∆ , predicted measurement just before the KF update

 Z
H H H H H

p

GPS IMU

GPS IMU

GPS IMU

GPS

GPS

GPS

=
−
−
−

















=
− +
− +
− +

















φ φ
λ λ

φ φ δφ
λ λ δλ

δ

(
~

)
(

~
)

(
~

)

 Hp =

















1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0

 Z
H H

T

T

H H H T
p

GPS IMU

GPS IMU

GPS IMU

GPS

GPS

GPS

∆

∆φ ∆φ
∆λ ∆λ
∆ ∆

∆φ ∆φ ∆

∆λ ∆λ ∆

∆ ∆ ∆

=
−
−
−

















=

− +

− +

− +



















(
~&)

(
~&)

(
~&)

δφ

δλ

δ

 H
T

T
T

p∆

∆
∆

∆
=

















0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

 155

 The two forms of measurements are applied under different cases. When GPS data is

available, the position measurement, Zp , is used. However, when GPS is unavailable, the error

states are propagated using the position rate change, Z p∆ , calculated using the last two position

estimates.

 Even though the Kalman filter used is the same KF used to integrate the MAPS/GPS,

the effectiveness of the KF when applied to the IMU/GPS is reduced since it uses nine states to

estimate position, velocity and heading errors but does not consider accelerometer biases and

gyroscope drifts. This will be shown clearly in the section describing System Performance.

A possible solution to aid the KF in better tracking the IMU states is to have a

feedback loop sending position, velocity and attitude (PVA) data back to the IMU to reinitialize

the states prior to calculating a navigation solution. Figure 5.27 compares the system diagrams

for both the MAPS/GPS and the IMU/GPS system with feedback. It is clear that the MAPS

does not rely on feedback of the position, velocity and attitude (PVA) states in calculating its

navigation output. The KF is used to improve on the MAPS output by using GPS as its other

measurement in reducing the error growth.

On the other hand, the KF sends PVA feedback to the IMU which it uses as its initial

states when propagating its navigation solution. The improved output of the IMU is now used in

conjunction with the GPS to get an even better estimate of the system PVA. This feedback

control makes using lower-grade sensors such as the IMU possible. Otherwise, the rapid error

growth would make the output unusable. Figure 5.28 shows general error curves for the

 156

MAPS and IMU when operating with GPS and a KF. These trends will be characteristic for

position, velocity and attitude errors.

Figure 5.27: KF System Diagram.

In Figure 5.29, there is a distinct difference in the error growth curves for the IMU and

MAPS when they are in stand-alone mode. As explained earlier, the main contributors to the

disparity in performance are the gyroscope drifts and accelerometer biases, which are smaller

for higher quality sensors such as those used by the MAPS. Aside from this, the MAPS uses its

own internal Kalman Filter to provide error corrections when calculating position, velocity, and

orientation through a built-in navigation solution. The integration of IMU with GPS through an

external KF will greatly improve the accuracy of the navigation output, approaching that of the

MAPS/GPS.

KF

MAPS
* alignment
* internal KF
* error model
* Navigation
 solution

* error model
* Navigation
 solution

Initial
Position

GPS

PVA

PVAT

PT

P - Position
V - Velocity
A - Attitude
T - Time

KF

IMU

* alignment
* Navigation
 solution

* error model
* Navigation
 solution

Initial
Position

GPS

PVA

PVAT

PT PVA’

 157

Figure 5.28: General Error Curves for MAPS/GPS and IMU/GPS.

In Figure 5.29, a more detailed description of the position error curve for the IMU/GPS

is given. The graph clearly shows that the IMU position error is prevented from growing rapidly

when aided with GPS position updates, received every second. The Kalman filter / IMU uses

the current update to propagate position until the next update. The IMU / Navigation Solution

(IMU/NAV) is constantly updated to the position correction of the KF. However, this error

smoothing is only effective when GPS is available. When GPS is lost, the IMU/NAV position

error eventually grows exponentially along with KF errors as shown in Figure 5.30.

IMU w/o GPS

MAPS

KF / MAPS
KF / IMU

GPS

Time, T

Error

 158

Figure 5.29: Detailed Error Curve for IMU/GPS.

Figure 5.30: Error Curve during Loss of GPS.

IMU w/o GPS

MAPS

IMU w/o GPS

KF

GPS

Time, T
 (sec)

Error

0 1 2 3 5 6 7

IMU
position

IMU w/o GPS

MAPS

KF

GPS

Time, T
 (sec)

Error

0 1 2 3 5 6 7

IMU
position

LOST
GPS

WITH
GPS

 159

Timing

 As explained earlier in Chapter 3, the synchronization of the system components

is essential to accurately use data at its valid time. Since only the GPS data is time-

tagged, it will be used as the reference for synchronization.

 The Main POS Processor’s (MPP) system clock will keep track of the current

time that it tags onto the IMU data. However, the PC clock has a drift. This is solved by

sending a mark input pulse to the RT-20 GPS receiver’s I/O port and requesting a

position precisely time-tagged to the mark input resulting in a highly accurate reference

time stamp. The time stamp is then used to reset the PC clock. This process is repeated

every minute.

 There are delays or lags associated with message transmission including line

delays, output period delays (up to 0.08 sec), and processing delays. Just like in the

timing of the MAPS, the IMU can be synchronized with GPS better by manually

gathering position data from the output of the IMU and the Kalman Filter, and comparing

them. By using a positional reference point, a time offset can be determined and used to

adjust the time of the IMU data.

System Performance

In order to fully understand the significance of the results of testing the

performance of the integrated system, the intermediate steps of IMU alignment and

navigation will first be analyzed. Each step will be referenced to known values to

accurately benchmark the individual processes. Also, the Kalman filter will first be

tested then tuned using simulated GPS position. Several dynamic tests are also

performed using the MAPS/GPS positioning system as the benchmark.

 160

IMU Alignment

 IMU Alignment consists of the coarse alignment stage and the fine alignment

stage. Since the fine alignment algorithm has not been tuned properly, only the coarse

alignment stage is tested. Once fully aligned, the Honeywell MAPS unit is used as the

known reference orientation. The coarse alignment time and the true yaw are varied and

the results are presented in Tables 5.25 and 5.26.

 Table 5.25: IMU Coarse Alignment (Time Variant).

Orientation Error (MAPS – IMU)
MAPS Orientation (deg): Roll = 2.58, Pitch = -2.81, Yaw = 98.09

Roll Error (deg) Pitch Error (deg) Yaw Error (deg)

Time (sec)

Mean Std Dev Mean Std Dev Mean Std Dev
60 0.07 0.02 -0.027 0.013 -1.956 2.908
120 0.067 0.029 -0.01 0.006 1.967 0.835
180 0.067 0.028 -0.01 0.016 1.138 1.203
300 0.072 0.021 -0.011 0.02 1.345 1.024

 Table 5.26: IMU Coarse Alignment (Yaw Variant).
Orientation Error (MAPS – IMU)
Coarse Alignment Time = 120 sec

Roll Error (deg) Pitch Error (deg) Yaw Error (deg)

Yaw
(deg)

Mean Std Dev Mean Std Dev Mean Std Dev
0 -0.052 0.029 0.041 0.011 2.31 1.67
90 0.033 0.008 -0.069 0.032 -1.79 1.02
180 0.074 0.039 -0.021 0.006 1.96 0.77
270 -0.036 0.005 0.082 0.051 -1.42 0.53

 As illustrated by the above results, the dependence of the orientation errors on the

current yaw angle may be attributed to small errors in the calculation and application of

the coefficients determined during manual calibration.

 161

IMU Navigation

 Testing of the output of the navigation solution of the IMU is performed using a

static and dynamic test. In the static test, the IMU is allowed to propagate its position,

velocity and orientation from a known initial position and orientation. In the dynamic

test, the IMU is moved around a predetermined path in a short amount of time. Once the

IMU position errors grow large, navigation becomes difficult.

Static Test

 The known position used is referenced to the CIMAR laboratory (Latitude =

29.646418 deg., Longitude = -82.349352, Altitude = 12.34 m.). The known orientation is

obtained from the initial alignment performed for 10 minutes. Static data is collected for

60 minutes. The difference between the known position values and the navigation output

are plotted in northing error, easting error, altitude error, and radial position (2D) error

(22)()(ErrorEastErrorNorth +) against time in Figures 5.31, 5.32, 5.33 and 5.34.

Figure 5.31: IMU Static Test Northing Error.

 162

Figure 5.32: IMU Static Test Easting Error.

Figure 5.33: IMU Static Test Altitude Error.

 163

Figure 5.34: IMU Static Test Pos Radial Error.

The orientation errors are shown in Figures 5.35, 5.36, and 5.37.

Figure 5.35: IMU Static Test Roll Error.

 164

 Figure 5.36: IMU Static Test Pitch Error.

Figure 5.37: IMU Static Test Yaw Error.

The results of the static test for both position and orientation errors fall within the

maximum errors calculated when using the performance specifications of the IMU for

accelerometer biases and gyroscopes drifts. The IMU is supposed to deliver a single-axis

 165

position accuracy to within 70 kilometers after 60 minutes. Single axis angular drift is

rated to be no more than 1.0 degree per hour.

Dynamic Test

 A simple way to test the dynamic output of the navigation solution of the IMU is

to move the sensor unit along a known path for a period of no more 40 seconds. This

ensures that the 2D position drift will stay below 10 meters. The actual test shows that

after 25 seconds, the IMU position drifts 0.8 meters. Also, the position drift is magnified

with motion in the same direction as the apparent bias. Here, the northeast becomes

obvious even when the IMU is stationary like at the end of the run.

 Figure 5.38: IMU Dynamic Test 1.

True Path
IMU Path

 166

 A second dynamic test is performed while the IMU is on the navigation test

vehicle (NTV) while it traverses 30 meters in the west direction. Over a span of 40

seconds, the IMU travels 37 meters in the west direction with a north drift of 3 meters.

This is shown by Figure 5.39. Figure 5.40 illustrates a third test wherein the NTV makes

a counterclockwise loop to end up near its start position. Here, the IMU output position

shows an 8 meter 2D error with a predominant southwards drift.

Figure 5.39: IMU Dynamic Test 2.

Using Simulated GPS Position

 The first step is to simulate GPS position. This will allow better initial tuning of

the Kalman Filter (KF).

Under Ideal Conditions

 The optimal performance of the integrated IMU/GPS system is measured by using

a set-up that simulates ideal conditions. In this case, ideal conditions refer to the

presence of good GPS position updates (at 1 hertz) at all times and with the IMU

IMU Navigation - 40 sec

29.6463

29.6464

29.6465

-82.3498 -82.3497 -82.3496 -82.3495 -82.3494 -82.3493

Longitude (deg)

L
at

it
u

d
e

(d
eg

)

IMU path Actual Path : dist = 30 m West

 167

accurately aligned. There are three tests run to measure system performance under ideal

conditions.

Figure 5.40: IMU Dynamic Test 3.

Static Test Using Reference GPS Position

By setting the GPS position to a fixed value previously surveyed, the Kalman

Filter (KF) takes advantage of tracking a constant position measurement, in the reference

GPS position, greatly enhancing its performance. The KF is then tuned by directly

measuring the filter position versus the constant GPS position and minimizing the errors

between them.

Once again the reference GPS position used is that of the CIMAR laboratory.

After the filter parameters are adjusted to that of the IMU, a static test reveals that the

filter is able to maintain a position accuracy of 0.5 m to that of the GPS position within

600 seconds (or 10 minutes). Beyond this point, the IMU error growth is so rapid (error

IMU path

29.6463

29.64632

29.64634

29.64636

29.64638

29.6464

29.64642

29.64644

-82.3496 -82.3495 -82.3495 -82.3494 -82.3494 -82.3493 -82.3493

Longitude (deg)

L
at

it
u

d
e

(d
eg

)

IMU pathActual Path

Time = 32 sec; Total Dist Travelled = 27 meters

IMU Navigation

 168

> 1200 m) that the filter is not able to keep up, resulting in large error oscillations. Figure

5.41 clearly illustrates this.

Static Test Using Tuned Kalman Filter

Further tuning of the Kalman filter is performed by adjusting the Q matrix that

contains the error rates for each state. Initially, Q is based on the parameters that are read

in through the filter configuration file (see Appendix C). By multiplying the tilt rates by

a factor of 10, better filter convergence and error tracking is achieved. In Figure 5.42, the

filter is able to track the GPS position to within 0.3 m over a span of 1000 seconds.

Figure 5.41: KF w/ IMU error model.

KF w/ IMU error model

0

1000

2000

3000

4000

0 150 300 450 600 750 900

Time (sec)

KF error IMU error

KF w/ IMU error model

0

0.5

1

1.5

2

0 150 300 450 600 750 900

Time (sec)

KF error IMU error

 169

Figure 5.42: Tuned KF w/ Q = 10 x [tilt rates].

Static Test Using KF Updates To Reset IMU Navigation

 Even with the KF tuned, the IMU position error growth becomes increasingly

significant over time. The MAPS can navigate for hours before the position error reaches

the kilometer range. It is impossible for the Kalman filter to output a good estimate since

the IMU errors are orders of magnitude greater than the desired submeter accuracy. In

order to effectively use the IMU for extended periods of time, a navigation reset is

performed. This navigation reset requires position, velocity and orientation updates from

the Kalman filter to the IMU. As explained earlier, a feedback loop now exists between

the KF and the IMU. The time span between updates is determined by two factors: (1)

time when the KF errors have converged to a minimum, and (2) time when the IMU 2D

position error does not exceed 500 meters. The key is to let the KF run as long as

possible before having to reset the IMU. Based on the previous static tests, a reset time

KF w/ IMU model
(Q[tilt]x10)

0

0.1

0.2

0.3

0.4

0.5

0 160 320 480 640 800 960

Time (sec)

P
o

s
E

rr
o

r
(m

)

KF error IMU error

 170

span of 320 seconds is selected. Figure 5.43 shows that the errors stay below 0.25 m over

a time span of 1800 seconds (30 minutes).

Figure 5.43: KF w/ IMU updated by KF every 320 sec.

Figure 5.43: KF & IMU with KF updates every 320 sec.

 It should be noted that the orientation plays a major role in the performance of

Kalman filter. Steady gyroscope output is essential in allowing the filter to effectively

model the position errors. To prove this point, a final static test is performed with the

orientation set to a fixed value (forcing no drifts). In Figure 5.44, it is obvious that the

KF output is greatly improved as the position errors stayed below 0.14 m for 1500 sec.

Under Adverse Conditions

 The main purpose of the Kalman Filter is to provide smoothened position,

velocity and orientation output even in the event of GPS loss. Since the performance of

the filter has already been investigated under ideal static conditions, using the same set-

up, the next step is to simulate temporary GPS loss. The behavior of the filter during

GPS loss is studied giving emphasis to duration and frequency of GPS loss.

KF w/ IMU model
(KF updates every 320 s)

0
0.05
0.1

0.15
0.2

0.25
0.3

0 320 640 960 1280 1600

Time (sec)

P
o

s
er

ro
r

(m
)

KF errorKF updates

 171

Figure 5.44: KF & IMU with orientation fixed.

Temporary GPS Loss

 Figures 5.45, 5.46, and 5.47 show the KF error curves during a single GPS loss

occurring at 200 sec. for durations of 10 sec., 30 sec., and 60 sec. respectively. The filter

manages to keep errors down only during the 10 second outage. However, it can be seen

that once GPS lock is reacquired, the position errors drop significantly and within 20

seconds error converges to a minimum.

Figure 5.45: KF w/ 10 sec Temporary GPS Loss.

KF w/ IMU error model
(no updates, orientation fixed)

0
0.02
0.04
0.06
0.08
0.1

0.12
0.14
0.16

0 300 600 900 1200 1500

Time (sec)

P
o

si
ti

o
n

 e
rr

o
r

(m
)

KF error IMU error

KF w/ Temporary GPS Loss (10 s)

0
0.05

0.1
0.15

0.2
0.25

0.3
0.35

0 50 100 150 200 250 300

Time (sec)

P
o

s
er

ro
r

(m
)

Series1
GPS Loss

 172

Figure 5.46: KF w/ 30 sec Temporary GPS Loss.

Figure 5.47: KF w/ 60 sec Temporary GPS Loss.

 The ability of the Kalman filter to recover after several short losses of GPS is also

tested. Using 10 second GPS outages occurring every 150 seconds, the filter shows it can

good position accuracy only for the first two outages (see Figure 5.48). The third GPS

outage results in a 2 meter error jump which is a result of the higher IMU errors.

KF w/ Temporary GPS Loss (30 s)

0

2

4

6

8

0 50 100 150 200 250 300

Time (sec)

P
o

s
er

ro
r

(m
)

KF error
GPS Loss

KF w/ Temporary GPS Loss (60 s)

0

2

4

6

8

10

12

0 50 100 150 200 250 300

Time (sec)

P
o

s
er

ro
r

(m
)

KF errorGPS Loss

 173

 In comparison, the same GPS loss sequence is tested with the KF updating the

IMU navigation after 300 seconds. This resets the error growth and allows the filter to

provide better estimates even during the third GPS loss. In Figure 5.49, the position error

spikes reach no higher than 0.7 m. throughout the 600 second time span.

Figure 5.48: KF w/ Multiple 10 sec Temporary GPS Losses.

Figure 5.49: KF w/ Multiple 10 sec Temporary GPS Losses
IMU Updated By KF at 300 sec.

KF w/ Temporary GPS losses

0

0.5

1

1.5

2

2.5

0 150 300 450 600

Time (sec)

P
o

s
er

ro
r

(m
)

KF errorGPS Loss

KF w/ Temporary GPS Losses
(IMU w/ KF updates every 300 s)

0

0.2

0.4

0.6

0.8

0 150 300 450 600

Time (sec)

P
o

s
er

ro
r

(m
)

KF errorGPS Loss

 174

Using Actual GPS Position

 With the KF tuned, the IMU/GPS is subjected to dynamic tests using actual GPS

position data. All the data runs are conducted on Test Range 3 of the Air Force Research

Lab in Tyndall Air Force Base using the Autonomous Mobility Research and Development

System (AMRADS) as the vehicle platform. The benchmark being used is the MAPS/GPS

system.

Dynamic Tests

 With the availability of actual GPS position data at 1 Hz, the next step is to investigate

the performance of the Kalman Filter (KF) as it tracks the position, velocity and attitude

during dynamic or moving conditions. With the AMRADS using the MAPS/GPS as its

main positioning system, the vehicle is manually driven given different conditions: pure

translation, pure rotation, and combined translation and rotation. Also, as it will be shown

later, the IMU/GPS performs adequately only for short periods of time. The data runs are

thus confined to less than 200 sec.

Pure Translation

 The objective of running under pure translation is to gauge the performance of the

accelerometers by decoupling the effect of rotation as measured by the gyroscopes. In the

test, however, the vehicle is driven manually which results in slight orientation changes. In

Figure 5.50, it is clear how the position drift of IMU causes the IMU/GPS KF position

output to diverge slowly away from the output of the MAPS/GPS. After 80 seconds, the

total position RMS error of 1.09 meters, after a total travel of 48.56 meters eastward.

Figure 5.51 shows the individual position errors in Local Geodetic Vertical coordinates

(North, East, Down).

 175

Dynamic Test 1: Pure Translation
Translation: West to East (dE = 48.5 m, dN = 2.5 m)

AFRL/Test Range 3: 10/2/2001

29.96995

29.97005

29.97015

-85.4782 -85.4781 -85.478 -85.4779 -85.4778 -85.4777 -85.4776

Longitude (deg)

MAPS-Pos IMU-Pos IMU only

Figure 5.50: Dynamic Test 1 - AMRADS under Pure Translation

Dynamic Test 1: Pure Translation
Position Errors (LGV)

-1.5

-1

-0.5

0

0.5

1

1.5

63830 63840 63850 63860 63870 63880 63890 63900 63910

Time (sec in day)

Northing error Easting error Down error

Figure 5.51: Dynamic Test 1 - LGV Position Errors

 The apparent drift in the north is caused by a divergence of the IMU north velocity

from the MAPS-Pos (see Figure 5.52), while the east velocities are closer (see Figure 5.53).

 176

Dynamic Test 1
Translation: West to East

North Velocity

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0 10 20 30 40 50 60 70 80

Mission Time (sec)

MAPS-Pos IMU-Pos IMU only

Figure 5.52: Dynamic Test 1 – LGV North Velocity

Dynamic Test 1
Translation: West to East

East Velocity

-0.1

0.1

0.3

0.5

0.7

0.9

0 10 20 30 40 50 60 70 80 90

Mission Time (sec)

MAPS-Pos IMU-Pos IMU only

Figure 5.53: Dynamic Test 1 – LGV East Velocity

 Throughout the entire run, while the KF tries to track the velocity, mean velocity errors

of 0.05-0.1 m/sec in all directions results in eventual positional drift (see Figure 5.54).

 177

Dynamic Test 1: Velocity Errors (LGV)

-0.2

-0.1

0

0.1

0.2

63830 63840 63850 63860 63870 63880 63890 63900 63910

Time (sec in day)

V
el

o
ci

ty
 e

rr
o

r
(m

/s
ec

)

Vel N error Vel E error Vel D error

Figure 5.54: Dynamic Test 1 – LGV Velocity Errors

 Figures 5.55, 5.56 and 5.57 show Roll, Pitch and Yaw for both IMU/GPS and

MAPS/GPS. The IMU/GPS orientation curves are almost identical to those of the

MAPS/GPS proving that the gyroscope output is good and the propagation algorithm of the

angles is valid.

Dynamic Test 1
Actual Roll

-3
-2
-1
0
1
2
3
4
5

0 10 20 30 40 50 60 70 80

Mission Time (sec)

R
o

ll
(d

eg
)

MAPS-Pos IMU-Pos

Figure 5.55: Dynamic Test 1 – Roll

 178

Dynamic Test 1
Actual Pitch

-3
-2
-1
0
1
2
3
4
5

0 10 20 30 40 50 60 70 80

Mission Time (sec)

P
it

ch
 (

d
eg

)

MAPS-Pos IMU-Pos

Figure 5.56: Dynamic Test 1 – Pitch

Dynamic Test 1
Actual Yaw

78

80

82

84

86

88

90

92

94

96

98

0 10 20 30 40 50 60 70 80

Mission Time (sec)

Y
aw

 (
d

eg
)

MAPS-Pos IMU-Pos

Figure 5.57: Dynamic Test 1 – Yaw

 Finally, Figure 5.58 summarizes the orientation errors after each angle has been adjusted

to eliminate the error offset caused by differences in initial alignment. All angles display errors

ranging between ± 0.1 degree.

 179

Dynamic Test 1: Adjusted Orientation Errors

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

63830 63840 63850 63860 63870 63880 63890 63900 63910

Time (sec in day)

O
ri

en
ta

ti
o

n
 e

rr
o

r
(d

eg
)

Roll error Pitch error Yaw error

Figure 5.57: Dynamic Test 1 – Orientation Errors

Pure Rotation

 To achieve close to pure rotation, the AMRADS is spun about its center

counterclockwise for one complete revolution. The purpose of this test is to evaluate

gyroscope performance under high dynamic conditions. However, since both the MAPS

and the IMU are both located away from the geometric center of the vehicle, spinning the

vehicle about its vertical axis also contributes linear accelerations to both inertial sensors.

These accelerations are a function of the linear distance between the MAPS or IMU center

and the center of the spin axis of the vehicle. The introduction of offset errors and high-

speed rotation result in unwanted position drift and poor KF response. This is shown in

Figure 5.58 for the MAPS/GPS system. The IMU/GPS system output shows even greater

drift.

 In Figure 5.59, the output orientation angle of interest, yaw, behaves identically for

both positioning systems over one complete rotation (360 deg). Also, Figures 5.60 and

 180

5.61 show that the roll and pitch curves are almost dead on except for offset values that are

attributed to the MAPS and the IMU not being mounted on the same shelf. The individual

orientation angle errors are given in Figure 5.62.

Dynamic Test 2: Pure Rotation
Use IMU Attitude

29.9698

29.96981

29.96982

-85.47794 -85.47793 -85.47792 -85.47791

Longitude (deg)

MAPS-Pos IMU-Pos

Figure 5.58: Dynamic Test 2 – Pure Rotation (ccw)

Dynamic Test 2: Yaw

0

45

90

135

180

225

270

315

360

65102 65103 65104 65105 65106 65107 65108 65109

Time (sec in day)

Y
aw

 (
de

g)

MAPS-Pos IMU-Pos

Figure 5.59: Dynamic Test 2 – Yaw

 181

Dynamic Test 2: Roll

-2
-1.5

-1
-0.5

0
0.5

1
1.5

2
2.5

3

65102 65103 65104 65105 65106 65107 65108 65109

Time (sec in day)

R
o

ll
(d

eg
)

MAPS-Pos IMU-Pos

Figure 5.60: Dynamic Test 2 – Roll

Dynamic Test 2: Pitch

-3

-2

-1

0

1

2

65102 65103 65104 65105 65106 65107 65108 65109

Time (sec in day)

P
it

ch
 (

d
eg

)

MAPS-Pos IMU-Pos

Figure 5.61: Dynamic Test 2 – Pitch

 Again, the pure rotation test proves that the gyroscope outputs are quite adequate for

calculating roll, pitch and yaw under dynamic conditions. However, it should be noted that

this test is conducted for a very short period of time and that the large gyroscope drifts will

eventually be a factor over time. In dynamic conditions, these gyroscope drift values are

insignificant compared to the large angular rotations measured.

 182

Dynamic Test 2: Orientation Errors

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

65102 65103 65104 65105 65106 65107 65108

Time (sec in day)

Roll error Pitch error Yaw error

Figure 5.62: Dynamic Test 2 – Orientation Errors

Combined Translation and Rotation

 In most situations of actual navigation, vehicle movement is characterized by a

combination of both translation and rotation. Here, both gyroscopes and accelerometers

play heavy roles in determining actual position, velocity and orientation of the vehicle.

CW Loop

Two different tests are performed. The first dynamic test (Dynamic Test 3)

involves running the vehicle in a clockwise loop of approximately twenty meters in

diameter. In this run, the velocity in the vehicle X direction is relatively constant.

 In Figure 5.63, the position output of the IMU-Pos KF drifts slightly downward and

recovers slightly at the end. The downward drift is a direct result of the IMU position

rapidly drifting south and moderately to the east. The altitude is the least accurate position

field and this is reflected in Figure 5.64.

 183

Dynamic Test 3
Combined Translation + Rotation : CW Loop

AFRL/Test Range 3: 10/2/2001

29.96985

29.96995

29.97005

29.97015

-85.4782 -85.4781 -85.478 -85.4779 -85.4778 -85.4777

Longitude (deg)

MAPS-Pos IMU-Pos Imu

Figure 5.63: Dynamic Test 3 – Combined Translation and Rotation

Figure 5.64: Dynamic Test 3 – Altitude vs. Time

Dynamic Test 3

-26.2

-26

-25.8

-25.6

-25.4

-25.2

-25

0 10 20 30 40 50 60 70 80

Mission Time (sec)

MAPS-Pos IMU-Pos

 184

 As with the previous dynamic tests, the orientation angles prove to be consistent in

both positioning systems. This is clearly illustrated in Figures 5.65, 5.66 and 5.67.

Dynamic Test 3

0

45

90

135

180

225

270

315

360

0 10 20 30 40 50 60 70 80

Mission Time (sec)

MAPS-Pos IMU-Pos

Figure 5.65: Dynamic Test 3 – Yaw vs. Time

Dynamic Test 3

-2

-1

0

1

2

3

4

5

6

0 10 20 30 40 50 60 70 80

Mission Time (sec)

R
o

ll
(d

eg
re

es
)

MAPS-Pos IMU-Pos

Figure 5.66: Dynamic Test 3 – Roll vs. Time

 185

Dynamic Test 3

-3

-2

-1

0

1

2

3

0 10 20 30 40 50 60 70 80

Mission Time (sec)

P
it

ch
 (

d
eg

re
es

)

MAPS-Pos IMU-Pos

Figure 5.67: Dynamic Test 3 – Pitch vs. Time

 The next three figures (5.68, 5.69 and 5.70) give the north, east and down velocity

respectively. There are clearly drifts in the north and upward directions of the IMU, which

contribute largely to the resulting position errors.

Dynamic Test 3

-1.5

-1

-0.5

0

0.5

1

1.5

0 10 20 30 40 50 60 70 80

Mission Time (sec)

MAPS-Pos IMU-Pos IMU only

Figure 5.68: Dynamic Test 3 – North Velocity vs. Time

 186

Dynamic Test 3

-1.5

-1

-0.5

0

0.5

1

1.5

0 10 20 30 40 50 60 70 80

Mission Time (sec)

MAPS-Pos IMU-Pos IMU only

Figure 5.69: Dynamic Test 3 – East Velocity vs. Time

Dynamic Test 3

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0 10 20 30 40 50 60 70 80

Mission Time (sec)

MAPS-Pos IMU-Pos IMU only

Figure 5.70: Dynamic Test 3 – Down Velocity vs. Time

 Figures 5.71, 5.72 and 5.73 give the position, velocity and orientation errors

respectively. The position error curves are a direct result of the velocity error curves. In

the orientation error curve, the spikes in the yaw error may be attributed to slight timing

 187

differences which cause the wrong yaw values to be matched at a certain time. It should be

noted that the position and velocity errors are in Local Geodetic Vertical (LGV)

coordinates defined by orthogonal axes of north, west and up.

Dynamic Test 3: Position Errors (LGV)

-1.5

-1

-0.5

0

0.5

1

1.5

2

64085 64095 64105 64115 64125 64135 64145 64155

Time (sec in day)

Northing error Easting error Down error RMS error

Figure 5.71: Dynamic Test 3 – Position Errors (LGV)

Dynamic Test 3 : Velocity Errors (LGV)

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

64085 64095 64105 64115 64125 64135 64145 64155

Time (sec in day)

Vel N error Vel E error Vel D error

Figure 5.72: Dynamic Test 3 – Velocity Errors (LGV)

 188

Dynamic Test 3 : Adjusted Orientation Errors

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

64080 64090 64100 64110 64120 64130 64140 64150 64160

Time (sec in day)

Roll error Pitch error Yaw error

Figure 5.73: Dynamic Test 3 – Orientation Errors

Zigzag

 The second combined dynamic test involves traversing in a zigzag pattern for about 80

seconds. This specific run definitively illustrates the effect of IMU position drift on the

degradation of the KF performance. In Figure 5.74, the IMU/GPS position immediately

diverges from the MAPS/GPS as the IMU navigation output has a huge eastwardly drift.

The IMU/GPS KF is able to track the GPS position even with worsening IMU output but

only to within 2-3 meters of the MAPS/GPS KF output.

 Figures 5.75, 5.76 and 5.77 show the differences between the two systems in position,

velocity and orientation respectively. In Figure 5.76, there is an immediate east velocity

drift which causes IMU navigation to quickly diverge. Even as the velocities eventually

settle down, the initial errors have already affected the position. The orientation errors

remain relatively constant except for the yaw which drops nearly a degree from the start.

 189

Dynamic Test 4
Combined Translation + Rotation: Zig Zag

29.9695

29.9697

29.9699

29.9701

29.9703

-85.4783 -85.4781 -85.4779 -85.4777 -85.4775 -85.4773 -85.4771 -85.4769

Longitude (deg)

MAPS-Pos IMU-Pos IMU only

Figure 5.74: Dynamic Test 4 – Combined Translation and Rotation : Zigzag

Dynamic Test 4 : Position Errors (LGV)

-5

-4

-3

-2

-1

0

1

2

66815 66825 66835 66845 66855 66865 66875 66885 66895

Time (sec in day)

Northing error Easting error Down error

Figure 5.75: Dynamic Test 4 – Position Errors (LGV)

 190

Dynamic Test 4 : Velocity Errors (LGV)

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

66815 66825 66835 66845 66855 66865 66875 66885 66895

Time (sec in day)

North Velocity error East Velocity error Down Velocity error

Figure 5.76: Dynamic Test 4 – Velocity Errors (LGV)

Dynamic Test 4 : Orientation Errors

-2

-1.5

-1

-0.5

0

0.5

1

66815 66825 66835 66845 66855 66865 66875 66885 66895

Time (sec in day)

Roll error Pitch error Yaw error

Figure 5.77: Dynamic Test 4 – Orientation Errors

 191

 Finally, Table 5.27 gives a summary of the errors of all four dynamic tests. These

errors are defined as the difference between the MAPS/GPS KF values and the IMU/GPS

KF values. It is clear that in pure translation, the standard deviation values for position,

velocity and orientation are low. Also, the errors are lower in the direction of translation

(east) mainly due to the accelerometer bias values being significantly lower in magnitude in

the direction of motion. In pure rotation, the north and east velocities have high standard

deviation which may be explained by the translation errors caused by the difference of

location of the MAPS and the IMU relative to the vehicle control point. These patterns

become apparent during the combined dynamic tests. Also, traveling at constant speed or

turning at constant rotation results in lower error values.

 Table 5.27: Summary of Dynamic Test Errors

Errors (MAPS/GPS - IMU/GPS)
 Pos Rms Northing Easting Altitude Roll Pitch Yaw Vel N Vel E Vel D

Dynamic Test 2 : Pure Translation

AVE 0.44957 0.31241 -0.26993 -0.7497 -1.1549 0.3725 8.7584 0.02219 -0.0002 0.0607

STD 0.21681 0.26377 0.09543 0.29505 0.0415 0.0473 0.0424 0.03724 0.0255 0.0268

Dynamic Test 2 : Pure Rotation

AVE 0.53053 0.17477 -0.39573 -0.3174 -1.0215 0.4248 1.1456 0.16057 -0.2507 0.0272

STD 0.43161 0.20375 0.49036 0.03912 0.221 0.2393 0.1987 0.48799 0.5577 0.0238

Dynamic Test 3: Combined Translation and Rotation (CW Loop)

AVE 0.91134 0.67093 -0.18222 -0.3357 -1.0333 0.4136 2.2528 0.02955 -0.008 0.0503

STD 0.43206 0.48533 0.54655 0.13624 0.119 0.0982 0.1111 0.11404 0.102 0.037

Dynamic Test 3: Combined Translation and Rotation (Zigzag)

AVE 2.95557 0.07274 -2.78014 -0.2124 -1.0122 0.4316 -0.556 -0.0281 -0.0691 0.0549

STD 0.8772 1.01874 0.8565 0.45831 0.1202 0.1016 0.3779 0.14706 0.1353 0.0492

192

CHAPTER 6
FUTURE WORK

 The task of selecting and benchmarking lower-cost positioning systems as alternatives

to the current MAPS/Ashtech positioning system on the Navigation Test Vehicle (NTV) has

proven to be successful. The level to which both the Novatel Beeline DGPS and IMU/GPS

positioning systems can be applied for autonomous vehicle navigation is highly dependent on the

type of application. There are still some issues that will have to be looked into to increase the

performance of the new systems.

Optimization of Beeline System Configuration

 In the discussions in Chapter 4, it is stated that the Novatel Beeline DGPS system

performed up to specifications. Once real-time kinematic position has converged, position

accuracies fall within 10-20 cm CEP. However, the long-term operation of the Beeline is

compromised by system resets attributed to processor overload. This is a direct result of the

fast data log rates out of the remote receiver. In the tests conducted, position, velocity, and

orientation data logs in ASCII are outputted at 5 Hz, which places a computational burden on

the receiver processor. The solution is to reduce the data log rates down to 2 Hz. Also, if

necessary, requesting logs in binary alleviates data traffic.

Future work may center on testing the effects of number of satellites in view, weather,

time of day and even time of year. Another important thing to study is the effects of multipath.

 193

The complications of using 2 separate GPS systems may have underlying effects. Lastly,

latency tests can be performed to check for system time errors.

IMU/GPS Positioning System

 At present the integration of the IMU with GPS through an external Kalman Filter has

been completed. However, the system still needs some areas of improvement before it can fully

be implemented on an autonomous ground vehicle.

Solidifying IMU Data Serial Interface

 Much of the present system output problems stem from occasional errors in the IMU

data. Error checking and data filtering are instant remedies but not solutions to the problem. To

ensure accurate navigation output, the IMU data errors have to be eliminated completely.

 The current system uses a DMA DOS driver for the ACB104 serial communications

interface card. This driver is not guaranteed by the serial card manufacturer. Based on tests

conducted, the serial card apparently experiences data overflows which results in system hang-

up. Once the PC104 stack together with the ACB104 card is reset, the data link is re-

established. Unpredictable behavior of the serial card and DOS DMA driver also causes bad

data output. Since the IMU data is averaged from 100 Hz to 12.5 Hz, the actual occurrence of

the erroneous data is difficult to pinpoint. Also, presently, the DOS DMA set-up so far is the

only way that the IMU output has successfully been read.

 To correct this problem, either the DOS DMA driver will have to be optimized, or the

more reliable Windows DMA driver will have to be investigated. No DMA drivers for Linux

are currently available.

 194

 A simpler solution would be to upgrade the software of the HG1700AG11 IMU so that

it can output Inertial Messages (100 Hz) through an RS-422 asynchronous serial line at 115

Kbps. This entails sending the IMU back to Honeywell for a software upgrade (to a

HG1700AG25 IMU) and subsequent recalibration. This eliminates the need for a separate

serial interface card that can read in synchronous SDLC type messages at 1 Mbps. Most PC

based platforms including the EBC-TX Plus are capable of directly reading in RS-422 serial

data at 115 Kbps.

Implementing Fine Alignment

 The fine alignment algorithm presented in Chapter 5 has been tested in simulation using

static IMU data collected with reference to the MAPS orientation. The next step is to

implement the same algorithm in C code and insert it in the NTV code as the succeeding

process after the coarse alignment. It should be highly noted that the fine alignment is a crucial

step in obtaining an accurate initial orientation from which the IMU navigation begins. However,

the large yaw deviation seen in the coarse alignment tests makes the fine alignment ineffective.

Again, this may be caused by the errors in the IMU data reception side. Further testing in

comparison to the MAPS will have to be done in order to ensure that the IMU can perform

self-alignment without any other external aid.

Optimization of Kalman Filter

 The external Kalman filter (KF) has been tuned to the IMU given static and dynamic

conditions. The Kalman filter uses nine states (three position error states, three velocity error

states, and three orientation error states) making it ideal for modeling the MAPS. However,

since the IMU accelerometers and gyroscopes are of a much lower grade, the biases and drifts

 195

play a major role in calculating the position, velocity and orientation. To effectively model the

IMU, a 15-state Kalman filter should be designed. This includes the nine states previously

described plus three bias error states and three drift error states. Also, for better navigation

solution integration, the IMU data output (accelerations and angular velocities) are fed directly

into the KF, which passes its output into a navigation solution.

Redesigning Hardware Configuration

 The first version of the IMU/GPS positioning system still leaves much to be redesigned.

Among the higher priorities is selecting a new serial interface for the IMU. At present, the

Sealevel ACB-104 is tying down the system since it uses an entire PC-104 stack just to read in

IMU data at 100 Hz and output averaged data at 12.5 Hz. This is not only costly but

inefficient. The switch over to Linux may present several options. The most immediate

alternative would be to use the Sealevel ACB-104 and install a Linux Direct Memory Access

(DMA) driver. Also, the PC-104 can be replaced by a SBC which drops system cost by

nearly $2,000. In the near future, when SBC’s improve in speed and memory efficiency, the

two processors (IMU DP & PMP) may be merged into one. An optimized version of the

IMU/GPS system may cost drop from $40,000 to $30,000 and will occupy only a half-shelf.

Using Novatel RT-2 GPS Receiver

 The IMU/GPS positioning system shows typical position accuracy of 8-20 cm CEP

when running under ideal conditions. Position converges continuously for up to 60 minutes and

reaches accuracies as high as 4-5 cm. The slow convergence of the RT-20 becomes a major

disadvantage when GPS lock is lost. Tests show that it takes normally 5 minutes for position to

reconverge to a 0.5 m accuracy level. Tests have also shown that once GPS is lost, the KF is

 196

able to maintain position to within 3 meters for not more than 30 seconds. Once GPS is

recovered, position is used if the system position RMS is better than 1 meter.

 The accuracy can be improved dramatically by replacing the Novatel RT-20 GPS

receiver with a Novatel RT-2 GPS receiver. Both use the same technology of carrier-phase

differential to provide high accuracy real-time kinematic position. However, the RT-2 achieves

it extra accuracy and precision due to its being able to utilize dual-frequency measurements

(L1/L2). This allows the RT-2 position to converge to within 2 cm. after 2 minutes (with an

antenna baseline of 0.1 km) in kinematic mode. This becomes especially advantageous when

the system is in a state of GPS recovery.

 Another advantage of using an RT-2 as a replacement is the seamless transition. The

RT-2 uses the same data logs, commands and functions (e.g. I/O pulse) the RT-20 uses. Thus,

minimal change would be done to the GPS code and turn-over time is fast.

 A big disadvantage, though, is the RT-2’s high cost. Using RT-2 receivers for both

base and remote stations will increase system cost by $8,000, making it self-defeating.

Evaluating Other Components

 Aside from the Novatel RT-2, there are a lot of newer, lower-cost, high-performance

GPS receivers to hit the market. A prime example of this is the Ashtech Z-Eurocard which sells

for $10,000 and gives real-time kinematic accuracy of 1 cm at 1 Hz and 2 cm at 10 Hz.

Receiving GPS updates at 10 Hz and outputting KF position at 20 Hz will allow the vehicle to

navigate effectively at higher speeds (up to 20 m/s or 45 mph). The Ashtech Z-Eurocard is a

bare GPS card which can be mounted and encased together with the other CPU boards, thus

saving space and cost.

 197

Novatel Black Diamond System

Novatel has recently come out with an integrated INS/GPS positioning system called

the Black Diamond System (BDS, see Figure 6.1) that uses similar components in the

Honeywell HG1700AG11 IMU and the Novatel RT-2 DGPS. The main differences with the

IMU/GPS being developed are the level of integration and the GPS component used.

Figure 6.1: Novatel Black Diamond System.

 198

First, Novatel is integrating at the lowest level, taking raw data from the IMU and the

GPS receiver and fusing it by means of a 15-state Kalman Filter. By doing this, the BDS is

capable of outputting position, velocity and attitude (PVA) at the IMU maximum output rate of

100 Hz. Also, the tightly-coupled integration minimizes system tuning due to the presence of

one KF. The KF also uses the IMU sensor biases and drifts as states which greatly improves

PVA calculation. Second, the BDS uses the Novatel RT-2 DGPS which gives 2 centimeter

position accuracy as compared to the RT-20 which gives an average of 20 cm.

Other advantages of the BDS include packaging and sensor enclosures that require

minimal installation. The sensor unit (top of Figure 6.1) and the controller (bottom of Figure

6.1) are separate, allowing the BDS sensor (IMU plus GPS antenna) to be located outside the

vehicle while the BDS controller can be housed inside the vehicle. Also, the BDS uses the

newer 600 series L1/L2 GPS antennas that weigh only a pound and already have a built-in

choke ring.

A summary of the BDS performance specifications are given in Table 6.1.

 199

 Table 6.1: Novatel BDS Performance Specifications
Specification Performance
Position Accuracy Stand Alone <3 m RMS

Code Differential 0.25 to 1 m RMS
RT-20 0.05 to 1 m RMS
RT-2 0.02 m RMS
Post Processed 0.02 to 2 m RMS

Velocity Accuracy RMS 0.02 m/s (nominal)
Attitude Accuracy RMS Roll 0.015°

Pitch 0.015°
Azimuth 0.05°

Acceleration Accuracy RMS 0.03 m/s
Time Accuracy 50 ns
Time to First Fix 120 s
Reacquisition 2 s
Position Degradation w/ Loss of GPS
 After 1 Minute < 4 meters
 After 2 Minutes < 17 meters
 After 3 Minutes < 38 meters
Alignment Time
 RT-2 GPS 2-3 minutes
 IMU 5 minutes
Data Rates Raw Measurement 100 Hz

Computed Position 100 Hz
Computed Attitude 100 Hz

Measurement Precision L1 C/A Code 6 cm RMS
L1 Differential Phase 0.75 mm RMS
L2 P Code 23 cm RMS
L2 Differential Phase 2 mm RMS

Dynamics Acceleration < 50 g
Velocity < 1000 knots
Height < 60,000 ft
Rotation < 1000 deg/s

Channels L1 - 12
L2 - 12

200

APPENDIX A
SUPPLEMENTAL MATHEMATICAL EQUATIONS

Fourth Order Runge Kutta

Position

X X k k k kx x x x
' ()= + + + +1

6 1 2 3 42 2 (5.83)

 where,

 k f Xx1 = () , using Eq. (5.81)

 k f X kx x2
1
2 1= +() , using Eq. (5.81)

 k f X kx x3
1
2 2= +() , using Eq. (5.81)

 k f X kx x4 3= +() , using Eq. (5.81)

Orientation

 q q k k k kx x x x
' ()= + + + +1

6 1 2 3 42 2 (5.93)

 where,

 k f qx1 = () , using Eq. (5.92)

 k f q kx x2
1
2 1= +() , using Eq. (5.92)

 k f q kx x3
1
2 2= +() , using Eq. (5.92)

 k f q kx x4 3= +() , using Eq. (5.92)

201

APPENDIX B
HONEYWELL HG1700AG11 SCHEMATIC DRAWINGS

Front View

202

Top View

Isometric View

203

Mounting Holes Layout

204

APPENDIX C
COMPUTER CODE

/*--*/
/* library : pos.c */
/* Version : 1.0 */
/* Contractor : Center for Inteligent Machines and Robotics */
/* : University of Florida */
/* Project : Autonomous Vehicle System */
/*---*/
/* Date : 05/01/01 original creation */
/* Last Update : 06/24/01 switch from MAPS to IMU */
/*---*/
/* This program spawns off threads to read in IMU and GPS data and sends */
/* it to the Kalman filter. Sensor offsets are also read in */
/* This pos code is JAUGS compatible and uses the latest MRS */
/*--*/

#include <pthread.h>
#include <signal.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <sys/time.h>
#include <unistd.h>

#define MAIN_PROGRAM
#include "pos.h"
#include "imuLib.h"
#include "filterLib.h"
#include "gpsLib.h"
#include "posConsole.h"
#include "portOpsLib.h"
#include "mrtLib.h"
#include "JAUGSMsgLib.h"
#include "txRxCoreJAUGSMsgLib.h"
#include "txRxPositionMsgLib.h"

#define USE_PATCH 0
#define FALSE 0
#define TRUE 1
#define MAX_GPS_RMS 0.5
#define DEBUG_STATE 99
#define SEC_IN_DAY 86400

205

pthread_t consoleThreadId;
pthread_t posThreadId, readGpsThreadId, updateStateThreadId;
unsigned char myNodeId, mySubsystemId;
unsigned char desiredState, currentState;
position_t novatel, imu, kFilter, ref;
imuInfo_t imuInfo;
novatelInfo_t novatelInfo;
double hertz=0;
double missionTime=0;
int setClockCount=0;
double dt1=0.0, dt2=0.0;
double gps_to_inu[3], inu_to_cp[3], gps_to_cp[3];
FILE *KFfp,*IMUfp,*GPSfp,*ERRfp;
int filesave = 0;
int USE;
double refRoll,refPitch,refYaw;
double biasX,biasY,biasZ,driftX,driftY,driftZ;
int TIME_COARSE;
double driftNorth,driftEast,driftDown,driftRms=0.0;
double imuNorth,imuEast,imuDown,imuRms=0.0;
double driftRoll,driftPitch,driftYaw=0.0;
double startroll,startpitch,startyaw=0.0;
int STATIC_TEST = TRUE;
double time1start,time1stop,time2start,time2stop,time3start,time3stop;
int WITHHOLD_GPS;
int HARDCODE_GPS;
double HClat,HClon,HCalt;
int NAV_UPDATE;

double geoDist(position_t pos0, posit ion_t pos1)
{
 double dlat, dlon;
 double dn, de;
 double dist;
 dlat = pos1.lat - pos0.lat;
 dlon = pos1.lon - pos0.lon;
 dn = dlat*D2R * earth_radius;
 de = dlon*D2R * (earth_radius * cos(pos0.lat*D2R));
 dist = sqrt(dn*dn + de*de);
 return dist;
}

void *updateStateThread(void *threadData)
{
 int mode, updateCount;
 double dist;

 while (1)
 {
 pthread_testcancel();

206

 if (currentState != desiredState)
 {
 if (desiredState == READY_STATE)
 {
 currentState = INITIALIZE_STATE;
 /* wait for new gps data */
 novatelInfo.newDataFlag = 0;

 while(novatelInfo.newDataFlag == 0)
 {
 pthread_testcancel();
 sleep(1);
 }
 /* wait for good gps data - assumes good gps for rest of
initialization */
 while(novatel.positionRms > MAX_GPS_RMS)
 {
 pthread_testcancel();
 sleep(1);
 }
 /* wait for good IMU data */
 while((mode =
getImuData(&imu,&imuInfo,kFilter,novatel,novatelInfo)) == -1)
 pthread_testcancel();
 /* check if IMU is trying to align */
 while (mode == 1) /* IMU is aligning */
 {
 pthread_testcancel();
 /* wait for good IMU data */
 while((mode =
getImuData(&imu,&imuInfo,kFilter,novatel,novatelInfo)) == -1)
 pthread_testcancel();

 /* make sure IMU data is close to GPS data */
 updateCount = 0;
 dist = geoDist(novatel, imu);
 while(dist > 0.5)
 {
 imu.lat = novatel.lat;
 imu.lon = novatel.lon;
 imu.alt = novatel.alt;
 sleep(2);
 pthread_testcancel();

 /* wait for good IMU data */
 while((mode = getImuData(&imu,
&imuInfo,kFilter,novatel,novatelInfo)) == -1)
 pthread_testcancel();

 dist = geoDist(novatel, imu);
 dist = 0.1;

207

 updateCount++;

 if ((dist > MAX_GPS_RMS) && (updateCount
> 10)) /* IMU not accepting update so restart */
 {
 imuInfo.status[0] = START_UP;
 imuInfo.status[1] = RESET;
 sleep(5);
 pthread_testcancel();
 }
 }
 }

 /* make sure IMU data is close to GPS data */
 updateCount = 0;
 dist = geoDist(novatel, imu);

 while(dist > 0.5)
 {
 imu.lat = novatel.lat;
 imu.lon = novatel.lon;
 imu.alt = novatel.alt;
 sleep(2);
 pthread_testcancel();

 /* wait for good IMU data */
 while((mode =
getImuData(&imu,&imuInfo,kFilter,novatel,novatelInfo)) == -1)
 pthread_testcancel();

 dist = geoDist(novatel, imu);
 updateCount++;

 if ((dist > 0.5) && (updateCount > 10)) /* IMU not
accepting update so restart */
 {
 imuInfo.status[0] = START_UP;
 break;
 }
 }

 if (dist < 0.5)
 {
 /* put IMU in ready state */
 currentState = READY_STATE;
 }
 else
 {
 /* unable to initialize */
 currentState = desiredState = FAILURE_STATE;
 }

208

 }
 else if (desiredState == STANDBY_STATE)
 {
 /* wait for position update request */
 updateCount = 0;
 while (!(imuInfo.status[0] == POS_UPDATE_REQUEST))
 {
 pthread_testcancel();
 updateCount++;
 sleep(5);

 if (updateCount >= 10)
 break;
 }

 if (updateCount < 10)
 {
 /* update IMU position */
 imu.lat = novatel.lat;
 imu.lon = novatel.lon;
 imu.alt = novatel.alt;
 currentState = STANDBY_STATE;
 }
 else
 {
 /* unable to standby */
 currentState = desiredState = FAILURE_STATE;
 }
 }
 else if (desiredState == SHUTDOWN_STATE)
 {
 /* wait for position update request */
 updateCount = 0;

 while (!(imuInfo.status[0] == POS_UPDATE_REQUEST))
 {
 pthread_testcancel();
 updateCount++;
 sleep(5);
 if (updateCount > 10)
 break;
 }

 /* update IMU position */
 imu.lat = novatel.lat;
 imu.lon = novatel.lon;
 imu.alt = novatel.alt;
 sleep(2);

 /* shutdown IMU */
 /* always go into shutdown state - even if it did not work */

209

 currentState = SHUTDOWN_STATE;
 }
 }
 else
 usleep(1e6);
 }
 return NULL;
}

#define SET_CLOCK_COUNT 120
#define BUF_SIZE 255

void *readGpsThread(void *threadData)
{
 struct timeval t0, t1, tNow;
 struct timezone z;
 port_t gpsDataPort;
 FILE *fp;
 char buf[BUF_SIZE], header[6];
 int week, cmStatus;
 double seconds, offset, offsetStd, utcOffset;
 double latency,age,horSpd,trkGnd,vertSpd;
 int solStatus, velStatus, rt20Status, stnId, numSats,datumId;
 double lat,lon,hgt,latStd,lonStd,hgtStd,undulation;
 int settingClock=0;
 double secondsBeforeToday, gpsSecondsToday;
 double gpsTime, gpsPosTime, gpsVelTime;
 int clock_sec_of_day;

 gpsDataPort = initPort(1,19200,"8N1");
 flushBuf(gpsDataPort,BOTH_BUF);
 fp=fdopen(gpsDataPort,"r");
 resetMarkPulse();

 /* set up gps reciever */
 while(1)
 {
 pthread_testcancel();

 if (HARDCODE_GPS)
 { /* HARD CODE POSITION */
 gettimeofday(&tNow,&z);
 clock_sec_of_day = tNow.tv_sec % 86400;
 novatel.time = (double)clock_sec_of_day + (double)tNow.tv_usec / 1.0e6 -
0.25*0;
 novatel.lat = HClat;
 novatel.lon = HClon;
 novatel.alt = HCalt;
 novatelInfo.newDataFlag = 1;
 novatel.positionRms = 0.1;
 sleep(1) ;

210

 }

 else
 {
 fgets(buf,BUF_SIZE,fp);
 pthread_testcancel();

 if (strncmp(buf,"$MKTA",5) == 0)
 {
 sscanf(buf,"%5s,%d,%lf,%lf,%lf,%lf,%d",

 header,&week,&seconds,&offset,&offsetStd,&utcOffset,&cmStatus);

 if (settingClock)
 {
 settingClock=0;
 secondsBeforeToday = (t0.tv_sec /
(long)SEC_IN_DAY)*SEC_IN_DAY;
 gpsTime = seconds - offset;
 gpsSecondsToday = (double)((int)gpsTime %
(int)SEC_IN_DAY)
 + (double)(gpsTime - (int)gpsTime);
 gettimeofday(&t1, &z);
 gpsSecondsToday += (double)(t1.tv_sec-t0.tv_sec)
 + (double)(t1.tv_usec-t0.tv_usec)/1.0e6;

 tNow.tv_sec = secondsBeforeToday + (long)gpsSecondsToday;
 tNow.tv_usec = (long)((gpsSecondsToday -
(long)gpsSecondsToday)*1e6);
 settimeofday(&tNow,&z);
 }
 }

 else if (strncmp(buf,"$VLHA",5) == 0)
 {
 sscanf(buf,"%5s,%d,%lf,%lf,%lf,%lf,%lf,%lf,%d,%d",

 header,&week,&seconds,&latency,&age,&horSpd,&trkGnd,&vertSpd,&solStatus,
 &velStatus);

 if ((solStatus == 0) && (velStatus < 2))
 {
 gpsVelTime = (int)seconds % SEC_IN_DAY;
 gpsVelTime += (seconds - (int)seconds);
 gpsVelTime -= latency;
 novatel.velN = horSpd * cos(trkGnd * D2R);
 novatel.velE = horSpd * sin(trkGnd * D2R);
 novatel.velD = -vertSpd;
 }
 }

211

 else if (strncmp(buf,"$RT20A",6) == 0)
 {

 sscanf(buf,"%6s,%d,%lf,%d,%lf,%lf,%lf,%lf,%d,%lf,%lf,%lf,%d,%d,%d",

 header,&week,&seconds,&numSats,&lat,&lon,&hgt,&undulation,

 &datumId,&latStd,&lonStd,&hgtStd,&solStatus,&rt20Status,&stnId);

 gpsPosTime = (int)seconds % SEC_IN_DAY;
 gpsPosTime += (seconds - (int)seconds);
 novatel.time = gpsPosTime;
 novatel.lat = lat;
 novatel.lon = lon;
 novatel.alt = hgt;
 novatel.positionRms = sqrt(latStd*latStd+lonStd*lonStd);

 if ((solStatus == 0) && (rt20Status < 2))
 novatelInfo.newDataFlag = 1;
 }
 else
 printf("%s\r\n\n",buf);

 setClockCount++;
 if(setClockCount >= SET_CLOCK_COUNT)
 {
 setClockCount = 0;
 settingClock=1;
 gettimeofday(&t0,&z);
 outputMarkPulse();
 }
 }
 }
}

void *posThread(void *threadData)
{
 struct timeval t0, t1;
 struct timezone z;
 static double startTime;
 double timePrev=0.0;
 float yawPrev=0.0;
 int new_gps_data, new_inu_data = 1;
 int initialized=FALSE;
 int ready;
 int pos_update, skip_update;
 INU_DATA inu, inu_past, delta_inu, inu_dot;
 QUEUE q;
 GPS_DATA gps, gps_past, delta_gps;
 NC_DATA nc;
 double Phi[number_states][number_states];

212

 double P[number_states][number_states];
 double x[number_states];
 double Q[number_states];
 double H[number_meas][number_states];
 double R[number_meas][number_meas];
 double F[number_states][number_states];
 double PHT[number_states][number_meas];
 double Resid_Cov[number_meas][number_meas];
 double meas_estimate[number_meas];
 double Gain[number_states][number_meas];
 double Residual[number_meas];
 double specific_force[3];
 int i,j;
 double x_ic[number_meas];
 double P_ic[number_meas][number_meas];
 imuInfo.errorCount = 0;

 while(1)
 {
 pthread_testcancel();
 if ((desiredState == READY_STATE) && (currentState == READY_STATE))
 {
 gettimeofday(&t0,&z);
 /* get new imu data */
 while (getImuData(&imu, &imuInfo, kFilter, novatel, novatelInfo) != 0)
 pthread_testcancel();
 /* check data */
 if (((int)(ref.lat - imu.lat) == 0) &&
 ((int)(ref.lon - imu.lon) == 0))
 {
 /* kalman Filter */
 inu.time = imu.time ;
 inu.latitude = imu.lat;
 inu.longitude = imu.lon;
 inu.altitude = (double)imu.alt;
 inu.roll = (double)imu.roll;
 inu.pitch = (double)imu.pitch;
 inu.yaw = (double)imu.yaw;
 inu.vel_north = (double)imu.velN;
 inu.vel_east = (double)imu.velE;
 inu.vel_down = (double)imu.velD;

 /* read new gps data */
 new_gps_data = novatelInfo.newDataFlag;
 if (new_gps_data)
 {
 gps.time = novatel.time;
 gps.latitude = novatel.lat;
 gps.longitude = novatel.lon;
 gps.altitude = (double)novatel.alt;
 /* decide if to use gps data */

213

 if (novatel.positionRms > MAX_GPS_RMS)
 { new_gps_data = FALSE ;
 printf("BAD GPS! ");
 }
 /* WITHHOLD GPS ROUTINE */
 if (WITHHOLD_GPS)
 {
 if (missionTime>time1start && missionTime<time1stop)
 { new_gps_data = FALSE ;
 printf("LOST GPS! ");
 }
 else if (missionTime>time2start && missionTime<time2stop)
 { new_gps_data = FALSE ;
 printf("LOST GPS! ");
 }
 else if (missionTime>time3start && missionTime<time3stop)
 { new_gps_data = FALSE ;
 printf("LOST GPS! ");
 }
 else
 printf(" ");
 }
 novatelInfo.newDataFlag = 0;
 }
 if (!initialized)
 {
 startTime = inu.time;
 if (new_gps_data)
 {

 INU_initialize(&pos_update,inu,gps,&nc,&q,&inu_past,
 &gps_past,Phi,F,P,Q,x,H,R);
 initialized = TRUE;
 startroll = imu.roll;
 startpitch = imu.pitch;
 startyaw = imu.yaw;
 }
 }
 else
 {
 ready = INU_setup_data(&inu,new_inu_data,gps,new_gps_data,

 &q,&inu_past,&delta_inu,&gps_past,&delta_gps);
 if (ready == TRUE)
 {
 if ((new_gps_data)||(NAV_UPDATE))
 {
 /*---*/
 /* Kalman Filter */
 /*---*/
 if (NAV_UPDATE)

214

 {
 printf("NAV UPDATE\n!");
 delta_inu.latitude = 0;
 delta_inu.longitude = 0;
 delta_inu.altitude = 0;
 delta_inu.vel_north = 0;
 delta_inu.vel_east = 0;
 delta_inu.vel_down = 0;

 INU_initialize(&pos_update,inu,gps,&nc,&q,&inu_past,
 &gps_past,Phi,F,P,Q,x,H,R);
 pos_update = 0;
 }

 form_INU_system_error_model (inu,delta_inu,&inu_dot,gps,
 delta_gps,specific_force,F) ;
 form_INU_state_transition
(F,delta_gps,Phi) ;

 propagate_INU_state (Phi,x) ;
 propagate_INU_covariance (inu,delta_inu,delta_gps,Phi,Q,P) ;
 INU_setup_measurements
(&pos_update,inu,delta_inu,gps,delta_gps,

 gps_to_inu,H,Residual,R) ;
 compute_INU_residual_covariance (P,H,R,PHT,Resid_Cov) ;
 compute_INU_meas_estimate (H,x,meas_estimate) ;
 skip_update = test_measurement_quality
(Residual,meas_estimate,
 Resid_Cov) ;

 if (skip_update == FALSE)
 {
 update_INU_covariance
(Resid_Cov,PHT,Gain,H,P) ;
 update_INU_state
(Gain,Residual,meas_estimate,x) ;
 }
 /*---*/
 /* END OF KALMAN FILTER
*/
 /*--*/
 }
 if (NAV_UPDATE)
 NAV_UPDATE = FALSE;
 else
 {
 compute_INU_nav_solution (new_gps_data,&q,delta_inu,inu,
 inu_dot,specific_force,x,P,inu_to_cp,&nc) ;
 }
 if (USE_PATCH)

215

 patch(new_gps_data,gps_to_cp,gps,&nc) ;

 /* write data to shared memory */
 kFilter.time = nc.time;
 kFilter.lat = nc.latitude;
 kFilter.lon = nc.longitude;
 kFilter.alt = (float)nc.altitude;
 if (q.ptr != 0)
 {
 kFilter.roll = (float)q.inu[q.ptr].roll;
 kFilter.pitch = (float)q.inu[q.ptr].pitch;
 kFilter.yaw = (float)q.inu[q.ptr].yaw;
 }
 kFilter.velN = (float)nc.vel_north;
 kFilter.velE = (float)nc.vel_east;
 kFilter.velD = (float)nc.vel_down;
 kFilter.positionRms = (float)nc.rms;
 /* calculate yaw rate */

 if(timePrev != 0.0)
 kFilter.yawRate = (kFilter.yaw -
yawPrev) /
 (kFilter.time -
timePrev);
 else
 kFilter.yawRate = 0.0;
 timePrev = kFilter.time;
 yawPrev = kFilter.yaw;
 }
 }
 }
 /* calculate loop rate */
 gettimeofday(&t1,&z);
 hertz = 1.0 / ((double)(t1.tv_sec - t0.tv_sec)
 + (double)(t1.tv_usec - t0.tv_usec)/1.0e6);
 missionTime = inu.time - startTime;

 /* Save Data to File */
 if ((filesave == TRUE) && (missionTime > 4.0))
 { fprintf(KFfp,"%.2f %.7f %.7f %.2f %.2f %.2f %.2f %.2f %.2f %.2f\n
",missionTime,kFilter.lat,kFilter.lon,kFilter.alt,kFilter.roll*R2D,kFilter.pitch*R2D,kFilter.yaw*R
2D,kFilter.velN,kFilter.velE,kFilter.velD);

 fprintf(IMUfp,"%.2f %.7f %.7f %.2f %.2f %.2f %.2f %.2f %.2f %.2f\n
",missionTime,imu.lat,imu.lon,imu.alt,imu.roll*R2D,imu.pitch*R2D,imu.yaw*R2D,imu.velN,im
u.velE,imu.velD);

 fprintf(GPSfp,"%.2f %.7f %.7f %.2f %.2f %.2f %.2f\n
",missionTime,novatel.lat,novatel.lon,novatel.alt,novatel.velN,novatel.velE,novatel.velD);

216

 fprintf(ERRfp,"%.2f %.3f %.3f %.3f %.3f %.2f %.2f %.2f %.3f %.3f %.3f
%.3f\n
",missionTime,driftNorth,driftEast,driftDown,driftRms,driftRoll*R2D,driftPitch*R2D,driftYaw*
R2D,imuNorth,imuEast,imuDown,imuRms);
 }

 if (STATIC_TEST)
 {
 driftNorth = (novatel.lat-kFilter.lat)*D2R * earth_radius;
 driftEast = (novatel.lon-kFilter.lon)*D2R * (earth_radius *
cos(novatel.lat*D2R));
 driftDown = novatel.alt - kFilter.alt;
 driftRms = sqrt(driftNorth*driftNorth+driftEast*driftEast);
 driftRoll = startroll - kFilter.roll;
 driftPitch = startpitch - kFilter.pitch;
 driftYaw = startyaw - kFilter.yaw;
 imuNorth = (novatel.lat-imu.lat)*D2R * earth_radius;
 imuEast = (novatel.lon-imu.lon)*D2R * (earth_radius *
cos(novatel.lat*D2R));
 imuDown = novatel.alt - imu.alt;
 imuRms = sqrt(imuNorth*imuNorth+imuEast*imuEast);
 }
 }
 else if (currentState == DEBUG_STATE) /* run off IMU only */
 {
 initialized = FALSE; /* filter is not initialized */
 gettimeofday(&t0,&z);
 while (getImuData(&imu, &imuInfo, kFilter, novatel, novatelInfo) != 0)
 pthread_testcancel();

 /* write results */
 kFilter.time = imu.time ;
 kFilter.lat = imu.lat;
 kFilter.lon = imu.lon;
 kFilter.alt = imu.alt;
 kFilter.roll = imu.roll;
 kFilter.pitch = imu.pitch;
 kFilter.yaw = imu.yaw;
 kFilter.velN = imu.velN;
 kFilter.velE = imu.velE;
 kFilter.velD = imu.velD;
 kFilter.positionRms = 99.99;

 /* calculate yaw rate */
 if(timePrev != 0.0)
 kFilter.yawRate = (kFilter.yaw - yawPrev) /
 (kFilter.time - timePrev);
 else
 kFilter.yawRate = 0.0;

217

 timePrev = kFilter.time;
 yawPrev = kFilter.yaw;
 /* calculate loop rate */
 gettimeofday(&t1,&z);
 hertz = 1.0 / ((double)(t1.tv_sec - t0.tv_sec)
 + (double)(t1.tv_usec - t0.tv_usec)/1.0e6);
 }
 else
 {
 initialized = FALSE; /* filter is not initialized */
 timePrev=0.0;
 yawPrev=0.0;
 sleep(1); /* just wait */
 }
 }
 return NULL;
}

void interruptHandler(int signo)
{
 desiredState = SHUTDOWN_STATE;
}

int main(int argc, char *argv[])
{
 int i, useConsole=FALSE;
 pthread_attr_t attr;
 struct sched_param p;
 JAUGSmessage_t rxMsg, txMsg;
 emergency_t emergencyData;
 status_t statusData;
 port_t gpsCorrectionsPort;
 FILE *fp;
 FILE *imuCFGfp;
 char line[100], c, d;
 struct _offset
 {
 double x;
 double y;
 double z;
 } imuOffset, novatelOffset;
 double lat, lon ;
 float alt, roll, pitch, yaw, time = 0.0 ;
 float velX, velY, velZ, velN, velE, velD ;
 double sinPsi, cosPsi, sinTheta, cosTheta, sinPhi, cosPhi ;
 double xvec[3], yvec[3], zvec[3] ;
 positionGeographicPosition_t positionData;

 if (argc == 2)
 {
 /* check for console switch */

218

 for (i=0; i<strlen(argv[1]); i++)
 if (argv[1][i] == 'c')
 useConsole = TRUE;
 if (useConsole != TRUE)
 {
 printf("Invalid switch %s\n",argv[1]);
 exit(1);
 }
 }
 else if (argc > 2)
 {
 printf("Usage: %s [-c]\n",argv[0]);
 exit(1);
 }

 /* initialize com port to gps */
 gpsCorrectionsPort = initPort(1,19200,"8N1");

 /* read in user input attitude wref to MAPS */
 if ((imuCFGfp = fopen("imu.cfg","r")) != NULL)
 {
 while (fgets(line,100,imuCFGfp) != NULL)
 {
 if(line[0] == 'r')
 sscanf(line,"%c %d %lf %lf %lf",&d,&USE,&refRoll,&refPitch,&refYaw);
 if(line[0] == 'c')
 sscanf(line,"%c %d",&d,&TIME_COARSE);
 if(line[0] == 'b')
 sscanf(line,"%c %lf %lf %lf %lf %lf
%lf",&d,&biasX,&biasY,&biasZ,&driftX,&driftY,&driftZ);
 if(line[0] == 'g')
 sscanf(line,"%c %d %lf %lf %lf %lf %lf
%lf",&d,&WITHHOLD_GPS,&time1start,&time1stop,&time2start,&time2stop,&time3start,&ti
me3stop);
 if(line[0] == 'h')
 sscanf(line,"%c %d %lf %lf
%lf",&d,&HARDCODE_GPS,&HClat,&HClon,&HCalt);
 }
 fclose(imuCFGfp);
 }

 /* read in sensor offsets from config file */
 if ((fp = fopen("pos.cfg","r")) != NULL)
 {
 while (fgets(line,100,fp) != NULL)
 {
 if(line[0] == 'r')
 {
 sscanf(line,"%c %lf %lf %f",&c,&ref.lat,&ref.lon,&ref.alt);
 }
 else if (line[0] == 'm')

219

 {
 sscanf(line,"%c %lf %lf %lf",&c,&imuOffset.x,
 &imuOffset.y,&imuOffset.z);
 }
 else if (line[0] == 'a')
 {
 sscanf(line,"%c %lf %lf %lf",&c,&novatelOffset.x,
 &novatelOffset.y,&novatelOffset.z);
 }
 }
 fclose(fp);

 gps_to_inu[0] = imuOffset.x - novatelOffset.x ;
 gps_to_inu[1] = imuOffset.y - novatelOffset.y ;
 gps_to_inu[2] = imuOffset.z - novatelOffset.z ;
 inu_to_cp[0] = -imuOffset.x ;
 inu_to_cp[1] = -imuOffset.y ;
 inu_to_cp[2] = -imuOffset.z ;
 gps_to_cp[0] = -novatelOffset.x ;
 gps_to_cp[1] = -novatelOffset.y ;
 gps_to_cp[2] = -novatelOffset.z ;
 }
 else
 {
 printf("ERROR: Configuration file not found\n");
 exit(1);
 }
 /* intialize communications with the MRS */
 while(openComm(MY_COMPONENT_ID,&myNodeId,&mySubsystemId) == -1)
 sleep(1);
 /* set up handler for interrupt signal */
 signal(SIGINT,&interruptHandler);
 /* initial state */
 currentState = STANDBY_STATE;
 desiredState = READY_STATE;
 /* start main thread(s) */
 pthread_attr_init(&attr);
 pthread_attr_setdetachstate(&attr,PTHREAD_CREATE_DETACHED);
 pthread_attr_setschedpolicy(&attr,SCHED_FIFO);
 p.sched_priority = sched_get_priority_max(SCHED_FIFO);
 pthread_attr_setschedparam(&attr,&p);
 pthread_attr_setinheritsched(&attr,PTHREAD_EXPLICIT_SCHED);
 pthread_create(&posThreadId, &attr, posThread, NULL);
 pthread_attr_destroy(&attr);
 pthread_attr_init(&attr);
 pthread_attr_setdetachstate(&attr,PTHREAD_CREATE_DETACHED);
 pthread_attr_setschedpolicy(&attr,SCHED_FIFO);
 p.sched_priority = sched_get_priority_max(SCHED_FIFO);
 pthread_attr_setschedparam(&attr,&p);
 pthread_attr_setinheritsched(&attr,PTHREAD_EXPLICIT_SCHED);
 pthread_create(&readGpsThreadId, &attr, readGpsThread, NULL);

220

 pthread_attr_destroy(&attr);

 /* start thread to update component state */
 pthread_attr_init(&attr);
 pthread_attr_setdetachstate(&attr,PTHREAD_CREATE_DETACHED);
 pthread_attr_setschedpolicy(&attr,SCHED_FIFO);
 p.sched_priority = sched_get_priority_min(SCHED_FIFO);
 pthread_attr_setschedparam(&attr,&p);
 pthread_attr_setinheritsched(&attr,PTHREAD_EXPLICIT_SCHED);
 pthread_create(&updateStateThreadId, &attr, updateStateThread, NULL);
 pthread_attr_destroy(&attr);

 if (useConsole)
 {
 /* start thread for console */
 pthread_attr_init(&attr);
 pthread_attr_setdetachstate(&attr,PTHREAD_CREATE_DETACHED);
 pthread_attr_setschedpolicy(&attr,SCHED_FIFO);
 p.sched_priority = sched_get_priority_min(SCHED_FIFO);
 pthread_attr_setschedparam(&attr,&p);
 pthread_attr_setinheritsched(&attr,PTHREAD_EXPLICIT_SCHED);
 pthread_create(&consoleThreadId, &attr, (void *)consoleThread, NULL);
 pthread_attr_destroy(&attr);
 }

 /* set up scheduling for main process */
 p.sched_priority = sched_get_priority_max(SCHED_FIFO);
 sched_setscheduler(getpid(),SCHED_FIFO,&p);
 while (currentState != SHUTDOWN_STATE)
 {
 if ((recvMessage(MY_COMPONENT_ID,&rxMsg)) != -1)
 {
 switch (rxMsg.messageId)
 {
 /* core componet messages */
 case (MY_COMPONENT_ID*256 + SHUTDOWN_MSG):
 desiredState = SHUTDOWN_STATE;
 break;
 case (MY_COMPONENT_ID*256 + STANDBY_MSG):
 desiredState = STANDBY_STATE;
 break;
 case (MY_COMPONENT_ID*256 + RESUME_MSG):
 desiredState = READY_STATE;
 /* Open Data File */
 if (filesave == 0)
 { KFfp = fopen("../pos/data/KF.dat","w");
 IMUfp = fopen("../pos/data/IMU.dat","w");
 GPSfp = fopen("../pos/data/GPS.dat","w");
 ERRfp = fopen("../pos/data/ERROR.dat","w");
 filesave = 1;
 break;

221

 }
 break;
 case (MY_COMPONENT_ID*256 + RESET_MSG):
 desiredState = READY_STATE;
 fclose(KFfp);
 fclose(IMUfp);
 fclose(GPSfp);
 fclose(ERRfp);
 filesave = 2;
 break;
 case (MY_COMPONENT_ID*256 + EMERGENCY_MSG):
 rxEmergency(&rxMsg,&emergencyData);
 if (emergencyData.emergencyCode.asField.stop)
 desiredState = EMERGENCY_STATE;
 break;
 case (MY_COMPONENT_ID*256 +
CLEAR_EMERGENCY_MSG):
 rxClearEmergency(&rxMsg,&emergencyData);
 if (emergencyData.emergencyCode.asField.stop)
 desiredState = STANDBY_STATE;
 break;
 case (MY_COMPONENT_ID*256 +
QUERY_STATUS_MSG):
 txMsg.properties.asField.expMsgFlag = 0;
 txMsg.properties.asField.srvConFlag = 0;
 txMsg.properties.asField.ackNak = 0;
 txMsg.properties.asField.priority = 6;
 txMsg.reserved = 0;
 txMsg.provSubsystemId = mySubsystemId;
 txMsg.reqCompId = MY_COMPONENT_ID;
 txMsg.reqSubsystemId = mySubsystemId;
 txMsg.sequenceNumber = 0;

 statusData.primaryStatus.asField.primaryStatusCode =
currentState;
 statusData.primaryStatus.asField.available = 0;
 statusData.secondaryStatus.asDoubleWord = 0;
 txStatus(&txMsg, &statusData);
 break;
 /* other component messages */
 case POSITION_QUERY_GEOGRAPHIC_POSITION:
 /* use kFilter data */
 time = kFilter.time ;
 lat = kFilter.lat ;
 lon = kFilter.lon ;
 alt = kFilter.alt ;
 roll = kFilter.roll ;
 pitch = kFilter.pitch ;
 yaw = kFilter.yaw ;
 velN = kFilter.velN ;
 velE = kFilter.velE ;

222

 velD = kFilter.velD ;

 /* convert velocity from NED to vehicle XYZ */
 sinPsi = sin(yaw) ;
 cosPsi = cos(yaw) ;
 sinTheta = sin(pitch) ;
 cosTheta = cos(pitch) ;
 sinPhi = sin(roll) ;
 cosPhi = cos(roll) ;

 xvec[0] = cosPsi*cosTheta ;
 xvec[1] = cosPsi*sinTheta*sinPhi - sinPsi*cosPhi ;
 xvec[2] = cosPsi*sinTheta*cosPhi + sinPsi*sinPhi ;
 yvec[0] = sinPsi*cosTheta ;
 yvec[1] = sinPsi*sinTheta*sinPhi + cosPsi*cosPhi ;
 yvec[2] = sinPsi*sinTheta*cosPhi - cosPsi*sinPhi ;
 zvec[0] = -sinTheta ;
 zvec[1] = cosTheta*sinPhi ;
 zvec[2] = cosTheta*cosPhi ;

 velX = (float)(velN*xvec[0] + velE*yvec[0] +
velD*zvec[0]) ;
 velY = (float)(velN*xvec[1] + velE*yvec[1] +
velD*zvec[1]) ;
 velZ = (float)(velN*xvec[2] + velE*yvec[2] +
velD*zvec[2]) ;

 while (yaw > PI)
 yaw -= 2.0*PI;
 while (yaw < -PI)
 yaw += 2.0*PI;

 positionData.latitude = lat;
 positionData.longitude = lon;
 positionData.elevation = alt;
 positionData.positionRMS = kFilter.positionRms;
 positionData.roll = roll;
 positionData.pitch = pitch;
 positionData.yaw = yaw;
 positionData.attitudeRMS = 0;
 positionData.velocityX = velX;
 positionData.velocityY = velY;
 positionData.velocityZ = velZ;
 positionData.velocityRMS = 0.0;
 positionData.rollRate = 0.0;
 positionData.pitchRate = 0.0;
 positionData.yawRate = kFilter.yawRate;
 positionData.omegaRMS = 0.0;
 positionData.timeStamp = time;

 txPositionGeographicPosition(&txMsg, &positionData);

223

 break;

 case 9826: /* gps corrections */
 /* send data to gps corrections port */
 write(gpsCorrectionsPort,rxMsg.data,rxMsg.dataSize);
 break;
 }
 }
 }
 closeComm(MY_COMPONENT_ID,myNodeId,mySubsystemId);
 /* cancel all threads */
 if ((posThreadId = pthread_cancel(posThreadId)) != 0)
 perror("pthread_cancel");
 if ((readGpsThreadId = pthread_cancel(readGpsThreadId)) != 0)
 perror("pthread_cancel");
 if ((updateStateThreadId = pthread_cancel(updateStateThreadId)) != 0)
 perror("pthread_cancel");
 printf("component %d is exiting\n",MY_COMPONENT_ID);
 return 0;
}

/*---------------------------*/
/* pos.h */
/*---------------------------*/
#ifndef __pos_h
#define __pos_h
#define MY_COMPONENT_ID POSITION

typedef struct _position
{
 double lat;
 double lon;
 float alt;
 float positionRms;
 float roll;
 float pitch;
 float yaw;
 float attitudeRms;
 float velN;
 float velE;
 float velD;
 float velocityRms;
 float rollRate;
 float pitchRate;
float yawRate;
 float attitudeRateRms;
 double time;
} position_t;

typedef struct _imuInfo
{

224

 float alignTime;
 int errorCount;
 int status[2];
} imuInfo_t;

typedef struct _novatelInfo
{
 char status;
 int newDataFlag;
} novatelInfo_t;

typedef struct _kFilterInfo
{
 char status;
} kFilterInfo_t;

#ifndef MAIN_PROGRAM
extern pthread_t consoleThreadId;
extern pthread_t posThreadId, readGpsThreadId, updateStateThreadId;
extern unsigned char myNodeId, mySubsystemId;
extern unsigned char desiredState, currentState;
extern position_t novatel, imu, kFilter, ref;
extern imuInfo_t imuInfo;
extern novatelInfo_t novatelInfo;
extern double hertz;
extern int setClockCount;
extern double dt1, dt2;
extern double missionTime;
extern int filesave;
extern int USE;
extern double refRoll,refPitch,refYaw;
extern double biasX,biasY,biasZ,driftX,driftY,driftZ;
extern int TIME_COARSE;
extern double driftNorth,driftEast,driftDown,driftRms;
extern double imuNorth,imuEast,imuDown,imuRms;
extern int STATIC_TEST;
extern double driftRoll,driftPitch,driftYaw;
extern double startroll,startpitch,startyaw;
extern double gps_to_inu[3], inu_to_cp[3], gps_to_cp[3];
extern int NAV_UPDATE;

#endif
#endif

/*--*/
/* library : imuLib.c */
/* Version : SBC-1.0 */
/* Programmer : Rommel Mandapat */
/* Contractor : Center for Intelligent Machines and Robotics */
/* : University of Florida */

225

/* Project : Autonomous Vehicle System */
/*--*/
/* Date : 04/13/2001 original creation */
/* Last Update : 06/07/2001 */
/*---*/
/* This library contains the following functions defined in imuLib.h: */
/*---*/

#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include <string.h>
#include <sys/time.h>
#include "pos.h"
#include "imuLib.h"

#include "portOpsLib.h"

int getImuData(position_t *data, imuInfo_t *imuInfo, position_t kFilter, position_t novatel,
novatelInfo_t novatelInfo)
{
 int mode = 0;
 GeoStruct GeoData;
 imuInfo_t Info;
 int FAKE_IMU = FALSE;

 imuGetGeodeticData(&GeoData, &Info, kFilter, novatel, novatelInfo);

 if (GeoData.good_data)
 {
 data->time = GeoData.time_stamp;
 data->lat = GeoData.latitude;
 data->lon = GeoData.longitude;
 data->alt = GeoData.altitude;
 data->roll = GeoData.roll;
 data->pitch = GeoData.pitch;
 data->yaw = GeoData.azimuth;
 data->velN = GeoData.vel_n;
 data->velE = GeoData.vel_e;
 data->velD = GeoData.vel_d;

 if ((FAKE_IMU) && (missionTime > 10))
 { data->lat = 29.646428;
 data->lon = -82.349362;
 data->alt = 12.34;
 data->roll = 1.38*D2R*1;
 data->pitch = -2.03*D2R*1;
 data->yaw = -3.0*D2R*1;
 data->velN = 0.0;
 data->velE = 0.0;

226

 data->velD = 0.0;
 }

 imuInfo->status[0] = Info.status[0];
 imuInfo->status[1] = Info.status[1];
 imuInfo->alignTime = Info.alignTime;

 if (Info.status[0] == ALIGN_MODE)
 mode = 1;
 if (Info.status[0] == NAVIGATION)
 mode = 0;

 return mode;
 }
 else
 {
 imuInfo->errorCount++;
 return -1;
 }
}

#define BUF_SIZE 255

int receive(ImuStruct *ImuData)
{
 port_t imuDataPort;
 FILE *fp;
 char buf[BUF_SIZE], header[6];

 double omeX,omeY,omeZ,accX,accY,accZ;

/* initialize port */
 imuDataPort = initPort(2,19200,"8N1");
 flushBuf(imuDataPort,BOTH_BUF);

 fp=fdopen(imuDataPort,"r");

 while(1)
 {
 fgets(buf,BUF_SIZE,fp);

 if (strncmp(buf,"$IMU",4) == 0)
 {

sscanf(buf,"%4s,%lf,%lf,%lf,%lf,%lf,%lf",header,&omeX,&omeY,&omeZ,&accX,&accY,&acc
Z);

 ImuData->omegaX = omeX;
 ImuData->omegaY = omeY;
 ImuData->omegaZ = omeZ;

227

 ImuData->accelX = accX;
 ImuData->accelY = accY;
 ImuData->accelZ = accZ;

 close(imuDataPort);

 return 1;
 }
 else
 close(imuDataPort);
 return 0;
 }
}

void imuGetGeodeticData(GeoStruct *GeoData, imuInfo_t *Info, position_t kFilter, position_t
novatel, novatelInfo_t novatelInfo)
{

/* Calibration Coeff : Biases and Drifts */
/* double biasX = 5.385437e-3; 5.385437e-3;
 double biasY = -5.674602e-3; -5.674602e-3;
 double biasZ = -8.352242e-3; -1.735224e-2;
 double driftX = -1.37536e-5; -1.37546e-5;
 double driftY = 6.959467e-6; 6.959467e-6;
 double driftZ = 1.038893e-5; 1.038893e-5;
*/
 ImuStruct ImuData;
 double IMU_LATENCY = 0.0e-6;

 double omegaX,omegaY,omegaZ;
 double accX,accY,accZ;

 static int OKalign = 0;
 static double rolli = 0.0;
 static double pitchi = 0.0;
 static double yawi = 0.0;

 double S_b[3];
 double w_b[3];
 double X_plus[6];
 double lat_plus,lon_plus,H_plus;
 static double R_B2V_plus[3][3];
 static double X[6];
 static double lat,lon,H;
 static double R_B2V[3][3];

 static double roll, pitch, yaw;
 static double r,p,y;
 int j,k;
 double R_n,R_m;
 static int navcount = 0;

228

 int new_gps_data;

 struct timeval t;
 struct timezone z;
 int goodData;
 int clock_sec_of_day;
 int SEC_IN_DAY = 86400;

 int USE_KF_DATA = FALSE;

 imuInfo_t iInfo;

 /* Receive Data Message from IMU */
 goodData = receive(&ImuData);
 GeoData->good_data = goodData;

 /* synchronize IMU time w/ SBC clock */
 if (goodData == TRUE)
 { gettimeofday(&t, &z);
 clock_sec_of_day = t.tv_sec % SEC_IN_DAY;
 GeoData->time_stamp = (double)clock_sec_of_day
 + (double)t.tv_usec/1.0e6 - IMU_LATENCY ;

 /* Add manual calibration biases and drifts */
 /* Rotate CS : vehicle Y (+ left), vehicle Z (+ up) */
 omegaX = ImuData.omegaX + driftX;
 omegaY = -ImuData.omegaY + driftY;
 omegaZ = -ImuData.omegaZ + driftZ;
 accX = ImuData.accelX + biasX;
 accY = -ImuData.accelY + biasY;
 accZ = -ImuData.accelZ + biasZ;

 if (OKalign == FALSE) /* Aligning */
 {
 GeoData->latitude = novatel.lat;
 GeoData->longitude = novatel.lon;
 GeoData->altitude = novatel.alt;
 GeoData->vel_n = -11.11;
 GeoData->vel_e = -11.11;
 GeoData->vel_d = -11.11;
 GeoData->roll = -11.11*D2R;
 GeoData->pitch = -11.11*D2R;
 GeoData->azimuth = -11.11*D2R;
 GeoData->good_data = TRUE;

 OKalign =
startAlign(omegaX,omegaY,omegaZ,accX,accY,accZ,&rolli,&pitchi,&yawi,novatel,novatelInfo,
&iInfo);

 Info->status[0] = ALIGN_MODE;
 Info->status[1] = iInfo.status[1];

229

 Info->alignTime = iInfo.alignTime;

 if (OKalign == TRUE)
 { GeoData->roll = rolli;
 GeoData->pitch = pitchi;
 GeoData->azimuth = yawi;
 Info->status[1] = ALIGNED;
 Info->status[0] = NAVIGATION;
 Info->alignTime = 0.0;
 }
 }

 else /* Align complete & Begin Navigation */
 {
 Info->alignTime = 0.0;
 Info->status[0] = NAVIGATION;
 Info->status[1] = ALIGNED;

 R_n = earth_radius / sqrt(1-e2*sin(lat)*sin(lat)); /* normal_radius */
 R_m = R_n * (1 - e2) / (1-e2*sin(lat)*sin(lat)); /* meridian_radius */

 if (navcount == 0)
 {
 B2V(rolli,pitchi,yawi,R_B2V);

 lat = novatel.lat*D2R;
 lon = novatel.lon*D2R;
 H = (double)novatel.alt;

 X[0] = 0;
 X[1] = 0;
 X[2] = 0;
 X[3] = -R_n*e2*sin(lat)*cos(lat);
 X[4] = 0;
 X[5] = R_n*(1-e2*(sin(lat)*sin(lat)))+H;
 }

 S_b[0] = accX;
 S_b[1] = accY;
 S_b[2] = accZ;
 w_b[0] = omegaX;
 w_b[1] = omegaY;
 w_b[2] = omegaZ;

 /* CALL NAVIGATION SOLUTION FUNCTION */

navsol(X_plus,&lat_plus,&lon_plus,&H_plus,R_B2V_plus,X,lat,lon,H,R_B2V,S_b,w_b);
 ++navcount;

 getangle(R_B2V_plus,&roll,&pitch,&yaw);
 r = roll;

230

 p = pitch;
 y = yaw;

 /* Update states */
 lat = lat_plus;
 lon = lon_plus;
 H = H_plus;

 new_gps_data = novatelInfo.newDataFlag;

 if (USE_KF_DATA)
 { if ((navcount%4000)==0)
 {
 r = kFilter.roll;
 p = -kFilter.pitch;
 y = -kFilter.yaw;
 /* r = rolli;
 p = pitchi;
 y = yawi;
 */ lat = novatel.lat*D2R;
 lon = novatel.lon*D2R;
 H = (double)novatel.alt;
 X_plus[0] = kFilter.velN;
 X_plus[1] = -kFilter.velE;
 X_plus[2] = -kFilter.velD;
 NAV_UPDATE = TRUE;
 printf("Update! ");
 }
 }

 B2V(r,p,y,R_B2V_plus);

 for (j=0;j<6;++j)
 X[j] = X_plus[j];
 for (j=0;j<3;++j)
 for (k=0;k<3;++k)
 R_B2V[j][k] = R_B2V_plus[j][k];

 /* write IMU data to shared memory */
 GeoData->latitude = lat*R2D;
 GeoData->longitude = lon*R2D;
 GeoData->altitude = H;
 GeoData->vel_n = X[0]; /* north velocity */
 GeoData->vel_e = -X[1]; /* east velocity, negative of vel_w */
 GeoData->vel_d = -X[2]; /* down velocity, negative of vel_u */
 GeoData->roll = r; /* same roll */
 GeoData->pitch = -p; /* negative of pitch */
 GeoData->azimuth = -y; /* negative of yaw */
 GeoData->good_data = TRUE ;
 }

231

 }
}

int startAlign (double Omega_X, double Omega_Y, double Omega_Z, double Accel_X, double
Accel_Y, double Accel_Z, double *rolli, double *pitchi, double *yawi, position_t novatel,
novatelInfo_t novatelInfo, imuInfo_t *iInfo)
{
 static double tot_Omega_X;
 static double tot_Omega_Y;
 static double tot_Omega_Z;
 static double tot_Accel_X;
 static double tot_Accel_Y;
 static double tot_Accel_Z;
 double ave_Omega_X = 0.0;
 double ave_Omega_Y = 0.0;
 double ave_Omega_Z = 0.0;
 double ave_Acc_X = 0.0;
 double ave_Acc_Y = 0.0;
 double ave_Acc_Z = 0.0;
 double omega_data_rms = 0.0;
 double accel_data_rms = 0.0;
 int DATA_USE = 0;
 int DATA_MODE = 0;
 static double refLat; /* Reference Latitude (GPS) */

/*** Static Condition Parameters ***/
 int STATIC_SEC = 3; /* min consecutive sec bef collect static data */
 int STATIC_START = STATIC_SEC*freq; /* min consecutive static data points bef collect
static data */
 int MOVE_SEC = 5; /* no. of consecutive sec before align reset */
 int MOVE_LIMIT = MOVE_SEC*freq; /* no. of cons data bef align reset */
 static int MOVE_COUNTER = 0;
 static int STATIC_COUNTER = 0;

/*** Coarse Alignment Parameters ***/
 static int ALIGN_STATUS = 0;
 /* No. of consecutive static data points to begin coarse align */
 int STATIC_COARSE ;
 static double TIME_LEFT;
 double roll, pitch, yaw;

 if ((ALIGN_STATUS == RESET)&&(STATIC_COUNTER==0))
 {
 if (novatelInfo.newDataFlag == 1)
 refLat = novatel.lat*D2R;
 }

 STATIC_COARSE = (int)(TIME_COARSE*freq) ;
 if (STATIC_COUNTER == 0)
 { tot_Omega_X = 0.0;

232

 tot_Omega_Y = 0.0;
 tot_Omega_Z = 0.0;
 tot_Accel_X = 0.0;
 tot_Accel_Y = 0.0;
 tot_Accel_Z = 0.0;
 }
 TIME_LEFT = (double)((STATIC_COARSE - STATIC_COUNTER +
STATIC_START)/freq);

 iInfo->alignTime = TIME_LEFT;
 iInfo->status[1] = COARSE_ALIGN;

 if ((STATIC_COUNTER-STATIC_START) <= STATIC_COARSE)
 {
 omega_data_rms =
sqrt(Omega_X*Omega_X+Omega_Y*Omega_Y+Omega_Z*Omega_Z);
 accel_data_rms = sqrt(Accel_X*Accel_X+Accel_Y*Accel_Y+Accel_Z*Accel_Z);

 DATA_USE = static_test(omega_data_rms,accel_data_rms,DATA_MODE);

 if (DATA_USE == TRUE)
 { ++ STATIC_COUNTER;
 if (STATIC_COUNTER>STATIC_START)
 {
 tot_Omega_X = tot_Omega_X + Omega_X;
 tot_Omega_Y = tot_Omega_Y + Omega_Y;
 tot_Omega_Z = tot_Omega_Z + Omega_Z;
 tot_Accel_X = tot_Accel_X + Accel_X;
 tot_Accel_Y = tot_Accel_Y + Accel_Y;
 tot_Accel_Z = tot_Accel_Z + Accel_Z;
 }
 }
 else
 { ++ MOVE_COUNTER;

 if (MOVE_COUNTER > MOVE_LIMIT)
 { ALIGN_STATUS = RESET ;
 STATIC_COUNTER = 0;
 MOVE_COUNTER = 0;
 }
 }
 return 0;
 }

 else
 {
 ave_Omega_X = tot_Omega_X / (STATIC_COUNTER-STATIC_START);
 ave_Omega_Y = tot_Omega_Y / (STATIC_COUNTER-STATIC_START);
 ave_Omega_Z = tot_Omega_Z / (STATIC_COUNTER-STATIC_START);
 ave_Acc_X = tot_Accel_X / (STATIC_COUNTER-STATIC_START);
 ave_Acc_Y = tot_Accel_Y / (STATIC_COUNTER-STATIC_START);

233

 ave_Acc_Z = tot_Accel_Z / (STATIC_COUNTER-STATIC_START);

 coarseAlign(ave_Omega_X, ave_Omega_Y, ave_Omega_Z, ave_Acc_X, ave_Acc_Y,
ave_Acc_Z, &roll, &pitch, &yaw, refLat);

 *rolli = roll;
 *pitchi = pitch;
 *yawi = yaw;

 STATIC_COUNTER = 0;

 return 1;
 }
}

int static_test(double omega_data_rms, double accel_data_rms, int DATA_MODE)
{
 double omega_rms_thresh = 0.005 ; /* Angular Velocity RMS threshhold value */
 double accel_rms_lowlimit = 9.73 ; /* 9.73 Acceleration RMS lower limit value */
 double accel_rms_uprlimit = 9.85 ; /* 9.85 Acceleration RMS upper limit value */

 if (omega_data_rms < omega_rms_thresh)
 { if ((accel_data_rms > accel_rms_lowlimit)&(accel_data_rms < accel_rms_uprlimit))
 { DATA_MODE = STATIC ;
 return 1;
 }
 else
 { DATA_MODE = MOVING;
 return 0;
 }
 }
 else
 { DATA_MODE = MOVING;
 return 0;
 }
}

void coarseAlign(double Omega_X, double Omega_Y, double Omega_Z, double Acc_X, double
Acc_Y, double Acc_Z, double *roll, double *pitch, double *yaw, double refLat)
{
 double fn[3];
 double wn[3];
 double vn[3];
 double fb[3];
 double wb[3];
 double vb[3];
 double M[3][3];
 double Minv[3][3];
 double Q[3][3];

234

 double R_B2V_th[3][3];
 double R_B2V[3][3];

 double r=0;
 double p=0;
 double y=0;

 init_matrix(R_B2V_th);
 init_matrix(R_B2V);
 init_matrix(M);

 /* Specific Force (gravity) vector in Nav Coord */
 fn[0] = -0.0146;
 fn[1] = 0;
 fn[2] = -grav;

 /* Earth Rotation Vector in Nav Coord */
 wn[0] = wie*cos(refLat);
 wn[1] = 0;
 wn[2] = wie*sin(refLat);

 cross(vn, fn, wn);

 M[0][0] = fn[0];
 M[0][1] = fn[1];
 M[0][2] = fn[2];
 M[1][0] = wn[0];
 M[1][1] = wn[1];
 M[1][2] = wn[2];
 M[2][0] = vn[0];
 M[2][1] = vn[1];
 M[2][2] = vn[2];

 invert_matrix(Minv, M);

 fb[0] = Acc_X ;
 fb[1] = Acc_Y ;
 fb[2] = Acc_Z ;

 wb[0] = Omega_X ;
 wb[1] = Omega_Y ;
 wb[2] = Omega_Z ;

 cross(vb,fb,wb);

 Q[0][0] = fb[0];
 Q[0][1] = fb[1];
 Q[0][2] = fb[2];
 Q[1][0] = wb[0];
 Q[1][1] = wb[1];

235

 Q[1][2] = wb[2];
 Q[2][0] = vb[0];
 Q[2][1] = vb[1];
 Q[2][2] = vb[2];

 matmult(R_B2V, Minv, 3, 3, Q, 3, 3);

 getangle(R_B2V, &r, &p, &y);

 *roll = r;
 *pitch = p;
 *yaw = y;

 if (USE)
 {
 printf("Using Ref Att !");
 *roll = refRoll*D2R;
 *pitch = -refPitch*D2R;
 *yaw = -refYaw*D2R;
 }
}

void getangle(double R_B2V[row][col], double *r, double *p, double *y)
{
 *r = atan2(R_B2V[2][1],R_B2V[2][2]);
 *p = asin(-R_B2V[2][0]);
 *y = atan2(R_B2V[1][0],R_B2V[0][0]);
}

void B2V(double r, double p, double y, double R_B2V[row][col])
{
 R_B2V[0][0] = cos(p)*cos(y);
 R_B2V[1][0] = cos(p)*sin(y);
 R_B2V[2][0] = -sin(p);
 R_B2V[0][1] = -cos(r)*sin(y)+sin(r)*sin(p)*cos(y);
 R_B2V[1][1] = cos(r)*cos(y)+sin(r)*sin(p)*sin(y);
 R_B2V[2][1] = sin(r)*cos(p);
 R_B2V[0][2] = sin(r)*sin(y)+cos(r)*sin(p)*cos(y);
 R_B2V[1][2] = -sin(r)*cos(y)+cos(r)*sin(p)*sin(y);
 R_B2V[2][2] = cos(r)*cos(p);
}

void matmult(double ans[row][col], double matrix1[row][col], int row1, int col1, double
matrix2[row][col], int row2, int col2)
{
 int i,j,k ;
 double temp=0;

236

 if (col1 != row2)
 exit;

 init_matrix(ans);

 for (i=0;i<row1;++i)
 { for (j=0;j<col2;++j)
 { for (k=0;k<col1;++k)
 { temp = matrix1[i][k]*matrix2[k][j] ;
 ans[i][j] = ans[i][j] + temp ;
 }
 }
 }
}

void vecmult(double ans2[row], double matrix1[row][col], int row1, int col1, double
vector1[row], int row2)
{
 int i,k ;
 double temp;

 init_vector(ans2);

 if (col1 != row2)
 exit;

 for (i=0;i<row1;++i)
 { for (k=0;k<col1;++k)
 { temp = matrix1[i][k]*vector1[k] ;
 ans2[i] = ans2[i] + temp ;
 }
 }
}

void matrix_add(double ans[row][col], double matrix1[row][col], int row1, int col1, double
matrix2[row][col], int row2, int col2)
{
 int i,j ;

 init_matrix(ans);

 for (i=0;i<row1;++i)
 { for (j=0;j<col1;++j)
 { ans[i][j] = matrix1[i][j] + matrix2[i][j] ;
 }
 }
}

void matrix_subtract(double ans[row][col], double matrix1[row][col], int row1, int col1, double
matrix2[row][col], int row2, int col2)
{

237

 int i,j ;

 init_matrix(ans);

 for (i=0;i<row1;++i)
 { for (j=0;j<col1;++j)
 { ans[i][j] = matrix1[i][j] - matrix2[i][j] ;
 }
 }
}

void vector_add(double ans2[row], double vector1[row], int row1, double vector2[row], int row2)
{
 int i;

 init_vector(ans2);

 for (i=0;i<row1;++i)
 { ans2[i] = vector1[i] + vector2[i] ;
 }
}

void vector_subtract(double ans2[row], double vector1[row], int row1, double vector2[row], int
row2)
{
 int i;

 init_vector(ans2);

 for (i=0;i<row1;++i)
 { ans2[i] = vector1[i] - vector2[i] ;
 }
}

void cross(double ans2[row], double vector1[row], double vector2[row])
{
 init_vector(ans2);

 ans2[0] = vector1[1]*vector2[2] - vector1[2]*vector2[1];
 ans2[1] = vector1[2]*vector2[0] - vector1[0]*vector2[2];
 ans2[2] = vector1[0]*vector2[1] - vector1[1]*vector2[0];
}

void transpose(double ans[row][col], double matrix[row][col])
{
 int i,j ;

 init_matrix(ans);

 for (i=0;i<row;++i)

238

 { for (j=0;j<col;++j)
 { ans[j][i] = matrix[i][j] ;
 }
 }
}

void identity_matrix(double result[row][col])
{
 int i,j ;

 if (row != col)
 exit;

 init_matrix(result);

 for (i=0;i<row;++i)
 { for (j=0;j<col;++j)
 result[i][j] = 0;
 result[i][i] = 1;
 }

}

void invert_matrix(double result[row][col], double matrix[row][col])
{
 int i,j,k,p ;
 double temp_matrix[row][2*row];
 double Id[row][row] ;
 double temp_vec = 0;
 double divisor[row];
 double val=0;
 double max;
 int rownum;
 double div;

 if (row != col)
 exit;

/* init_matrix(temp_matrix);*/
 init_matrix(result);
 init_vector(divisor);
 identity_matrix(Id);

 p = row;

 /* form augmented matrix (original matrix + identity matrix, n x 2n) */
 for (i=0;i<p;++i)
 { for (j=0;j<p;++j)
 { temp_matrix[i][j] = matrix[i][j];
 temp_matrix[i][j+p] = Id[i][j];
 }

239

 }

 /* Gaussian reduction */

 for (i=0 ; i<col ; ++i)
 { max = 0.0 ;
 rownum = i ;

 for (j=rownum ; j<row ; ++j)
 { val = fabs(temp_matrix[j][i]) ;
 if (val>max)
 { max = val ;
 rownum = j ;
 }
 }

 /* swap row 'rownum' with row 'i' */
 if (rownum != i)
 { for (j=0; j<(2*col); ++j)
 {
 temp_vec = temp_matrix[i][j] ;
 temp_matrix[i][j] = temp_matrix[rownum][j] ;
 temp_matrix[rownum][j] = temp_vec ;
 }
 }

 /* if the pivot value is close to zero, then we have a problem
 if (valuenear(temp_matrix[i][i], 0.0, 0.00001))
 {
 exit ;
 }
*/
 div = temp_matrix[i][i];
 /* make the pivot value equal to one */
 for (j=0; j<(2*col); ++j)
 {
 temp_matrix[i][j] = temp_matrix[i][j]/div ;
 }

 for (j=0 ; j<row ; ++j)
 {
 if (j == i)
 continue ;

 val = temp_matrix[j][i] ;
 for (k=0; k<(2*col); ++k)
 {
 temp_matrix[j][k] = temp_matrix[j][k] - val * temp_matrix[i][k] ;
 }
 }
 }

240

 for (i=0; i<p; ++i)
 {
 for (j=0; j<(2*p); ++j)
 {
 result[i][j] = temp_matrix[i][j+p];
 }
 }
}

void print_matrix(double ans[row][col])
{
 int i,j;

 for (i=0;i<row;++i)
 { printf("\n");
 for (j=0;j<col;++j)
 printf(" %.8f ",ans[i][j]) ;
 }
 printf("\n");
}

void print_vector(double ans2[row])
{
 int i;

 for (i=0;i<row;++i)
 printf("\n %.8f ",ans2[i]) ;
 printf("\n");

}

void init_matrix(double matrix1[row][col])
{
 int i,j;

 for (i=0;i<row;++i)
 for (j=0;j<col;++j)
 { matrix1[i][j] = 0 ;
 }
}

void init_vector(double vector[row])
{
 int i;

 for (i=0;i<row;++i)
 { vector[i] = 0 ;
 }
}

241

void navsol(double X_plus[6],double *lat_plus,double *lon_plus,double *H_plus,double
R_B2V_plus[3][3],double X[6],double lat,double lon,double H,double R_B2V[3][3],double
S_b[3],double w_b[3])
{

/* conversion constants */

/* variables */
 double R_n = 0;
 double R_m = 0;
 double In[3][3];
 double In4[4][4];
 double Ia[6][6];
 double Zn[3][3];
 double lon_i = 0;
 double V_n,V_w,V_u;
 double P_n,P_w,P_u;
 double R_C2V[3][3];
 double R_I2V[3][3];
 double R_E2V[3][3];
 double gn,gw,gu;
 double w_ie2v[3];
 double omega_IE2V[3][3];
 double w_ev2v[3];
 double omega_EV2V[3][3];
 double w_iv2v[3];
 double omega_IV2V[3][3];
 double A1[3][3];
 double A2[3][3];
 double A[6][6];
 double B[6][9];
 double U[9];
 double R_V2B[3][3];
 double V1[3];
 double Vtemp[3];
 double w_ib2b[3];
 double q1,q2,q3,q4;
 double q[4];
 double q_plus[4];
 int n,m;
 double tempM[3][3];
 double tempM2[3][3];
 double phi,theta,psi;
 double R,P,Y;

/* calculate earth radius components */
 R_n = earth_radius / sqrt(1-e2*sin(lat)*sin(lat)); /* normal_radius */
 R_m = R_n * (1 - e2) / (1-e2*sin(lat)*sin(lat)); /* meridian_radius */

 identity_matrix(In);

242

 for (m=0;m<4;++m)
 { for (n=0;n<4;++n)
 In4[m][n] = 0.0;
 In4[m][m] = 1.0;
 }

 for (m=0;m<6;++m)
 { for (n=0;n<6;++n)
 Ia[m][n] = 0.0;
 Ia[m][m] = 1.0;
 }

 init_matrix(Zn);

 lon_i = lon + wie/dt;

/* Initial Rotation matrix for inertial (I) to navigation (V) */
 I2V(R_I2V,lat,lon_i);

 V_n=X[0];
 V_w=X[1];
 V_u=X[2];

 X[3] = -R_n*e2*sin(lat)*cos(lat);
 X[4] = 0;
 X[5] = R_n*(1-e2*(sin(lat)*sin(lat)))+H;

 P_n=X[3];
 P_w=X[4];
 P_u=X[5];

/* Initial Rotation matrix for LCV (C) to navigation (V) */
 C2V(R_C2V,P_n,P_w,P_u);

/* Initial Rotation matrix for inertial (I) to navigation (V) */
 I2V(R_E2V,lat,lon);

/* compute gravity vector */

 gn = - wie*wie*(earth_radius+H)*sin(2*lat)/2;
 gw = 0.0;
 gu = grav + wie*wie*(earth_radius+H)*(1+cos(2*lat))/2;

/*** setup up Skewed symmetric matrices ***/

 w_ie2v[0] = wie*cos(lat);
 w_ie2v[1] = 0;
 w_ie2v[2] = wie*sin(lat);

243

 skewsymm(omega_IE2V,w_ie2v);

 w_ev2v[0] = -V_w/(R_n+H);
 w_ev2v[1] = V_n/(R_m+H);
 w_ev2v[2] = (-tan(lat)*V_w)/(R_n+H);

 skewsymm(omega_EV2V,w_ev2v);

 w_iv2v[0] = w_ie2v[0] + w_ev2v[0];
 w_iv2v[1] = w_ie2v[1] + w_ev2v[1];
 w_iv2v[2] = w_ie2v[2] + w_ev2v[2];

 skewsymm(omega_IV2V,w_iv2v);

/********** Define the A matrix **********/

 matrix_add(A1,omega_IV2V,3,3,omega_IE2V,3,3);

 matmult(A2,omega_IE2V,3,3,omega_IE2V,3,3);

 for (m=0;m<6;++m)
 for (n=0;n<6;++n)
 A[m][n] = 0.0;

 A[0][0] = -A1[0][0];
 A[0][1] = -A1[0][1];
 A[0][2] = -A1[0][2];
 A[0][3] = -A2[0][0];
 A[0][4] = -A2[0][1];
 A[0][5] = -A2[0][2];
 A[1][0] = -A1[1][0];
 A[1][1] = -A1[1][1];
 A[1][2] = -A1[1][2];
 A[1][3] = -A2[1][0];
 A[1][4] = -A2[1][1];
 A[1][5] = -A2[1][2];
 A[2][0] = -A1[2][0];
 A[2][1] = -A1[2][1];
 A[2][2] = -A1[2][2];
 A[2][3] = -A2[2][0];
 A[2][4] = -A2[2][1];
 A[2][5] = -A2[2][2];
 A[3][0] = 1;
 A[3][1] = 0;
 A[3][2] = 0;
 A[3][3] = -omega_EV2V[0][0];
 A[3][4] = -omega_EV2V[0][1];
 A[3][5] = -omega_EV2V[0][2];
 A[4][0] = 0;
 A[4][1] = 1;
 A[4][2] = 0;

244

 A[4][3] = -omega_EV2V[1][0];
 A[4][4] = -omega_EV2V[1][1];
 A[4][5] = -omega_EV2V[1][2];
 A[5][0] = 0;
 A[5][1] = 0;
 A[5][2] = 1;
 A[5][3] = -omega_EV2V[2][0];
 A[5][4] = -omega_EV2V[2][1];
 A[5][5] = -omega_EV2V[2][2];

/********* Define the B matrix ***********/

 for(m=0;m<6;++m)
 for(n=0;n<9;++n)
 B[m][n] = 0.0;

 B[0][0] = R_C2V[0][0];
 B[0][1] = R_C2V[0][1];
 B[0][2] = R_C2V[0][2];
 B[0][3] = R_E2V[0][0];
 B[0][4] = R_E2V[0][1];
 B[0][5] = R_E2V[0][2];
 B[0][6] = R_B2V[0][0];
 B[0][7] = R_B2V[0][1];
 B[0][8] = R_B2V[0][2];
 B[1][0] = R_C2V[1][0];
 B[1][1] = R_C2V[1][1];
 B[1][2] = R_C2V[1][2];
 B[1][3] = R_E2V[1][0];
 B[1][4] = R_E2V[1][1];
 B[1][5] = R_E2V[1][2];
 B[1][6] = R_B2V[1][0];
 B[1][7] = R_B2V[1][1];
 B[1][8] = R_B2V[1][2];
 B[2][0] = R_C2V[2][0];
 B[2][1] = R_C2V[2][1];
 B[2][2] = R_C2V[2][2];
 B[2][3] = R_E2V[2][0];
 B[2][4] = R_E2V[2][1];
 B[2][5] = R_E2V[2][2];
 B[2][6] = R_B2V[2][0];
 B[2][7] = R_B2V[2][1];
 B[2][8] = R_B2V[2][2];

 U[0] = 0.0018;
 U[1] = 0;
 U[2] = -9.81;
 U[3] = 0;
 U[4] = 0;
 U[5] = 0;

245

 U[6] = S_b[0];
 U[7] = S_b[1];
 U[8] = S_b[2];

/* State equation: X_plus = expAdt*X + expAdt*B*U */

 RK45nav(X_plus,dt,A,X,B,U);

 V_n = X_plus[0];
 V_w = X_plus[1];
 V_u = X_plus[2];
 P_n = X_plus[3];
 P_w = X_plus[4];
 P_u = X_plus[5];

 /* transport rate in navigation frame */

 /* Height at time, t=t+dt */
 *H_plus = H + V_u*dt;

 /* latitude at time, t=t+dt */
 lat_plus = lat + (V_n/(R_m+H))(dt);

 /* longitude at time, t=t+dt */
 lon_plus = lon - ((V_w/cos(lat))/(R_n+H))(dt);

/******** compute rotational changes ***********/

/* Gyro Output Eq: w_ib2b = w_b-R_B2V'*w_ie2v; */

 transpose(R_V2B,R_B2V);

 vector_add(Vtemp,w_ie2v,3,w_ev2v,3);

 vecmult(V1,R_V2B,3,3,Vtemp,3);

 vector_subtract(w_ib2b,w_b,3,V1,3);

 /* initialize quaternions */
 q1 = 0.5*sqrt(1+R_B2V[0][0]+R_B2V[1][1]+R_B2V[2][2]);

 if (q1 == 0)
 { q2 = 0;
 q3 = 0;
 q4 = 1;
 }
 else
 { getangle(R_B2V,&phi,&theta,&psi);

246

 if (psi<0)
 {
 q1 = -q1;
 }
 q2 = (R_B2V[2][1]-R_B2V[1][2])/(4*q1);
 q3 = (R_B2V[0][2]-R_B2V[2][0])/(4*q1);
 q4 = (R_B2V[1][0]-R_B2V[0][1])/(4*q1);
 }

 q[0] = q1;
 q[1] = q2;
 q[2] = q3;
 q[3] = q4;

 RK45quat(q_plus,dt,q,w_ib2b);

 QUAT(R_B2V_plus,q_plus);

 /* Ensure Orthogonality */
 getangle(R_B2V_plus,&R,&P,&Y);
 B2V(R,P,Y,R_B2V_plus);

 /* Orthogonality Check */
 transpose(tempM,R_B2V_plus);
 matmult(tempM2,R_B2V_plus,3,3,tempM,3,3);
}

void C2V(double R_C2V[3][3],double P_n,double P_w,double P_u)
{
 double P = 0;

 P = sqrt(P_n*P_n+P_u*P_u);

 if (P==0)
 init_matrix(R_C2V);
 else
 R_C2V[0][0] = P_u/P;
 R_C2V[0][1] = 0;
 R_C2V[0][2] = P_n/P;
 R_C2V[1][0] = 0;
 R_C2V[1][1] = 1;
 R_C2V[1][2] = 0;
 R_C2V[2][0] = -P_n/P;
 R_C2V[2][1] = 0;
 R_C2V[2][2] = P_u/P;
}

/*--*/

247

/* Procedure : E2I() */
/* Version : SBC-1.0 */
/* Programmer : Rommel Mandapat */
/* Contractor : Center for Intelligent Machines and Robotics */
/* : University of Florida */
/* Project : Autonomous Vehicle System */
/*--*/
/* Date : 04/13/2001 original creation */
/* Last Update : 06/07/2001 */
/*--*/
/* This function calculates a rotation matrix from ECEF to ECI */
/*--*/
void E2I(double R_E2I[3][3],double dtime)
{
 R_E2I[0][0] = cos(wie)*dtime;
 R_E2I[0][1] = -sin(wie)*dtime;
 R_E2I[0][2] = 0.0;
 R_E2I[1][0] = sin(wie)*dtime;
 R_E2I[1][1] = cos(wie)*dtime;
 R_E2I[1][2] = 0.0;
 R_E2I[2][0] = 0.0;
 R_E2I[2][1] = 0.0;
 R_E2I[2][2] = 1.0;
}

void I2V(double R_I2V[3][3],double lat,double lon)
{
 R_I2V[0][0] = -cos(lon)*sin(lat);
 R_I2V[0][1] = -sin(lon)*sin(lat);
 R_I2V[0][2] = cos(lat);
 R_I2V[1][0] = sin(lon);
 R_I2V[1][1] = -cos(lon);
 R_I2V[1][2] = 0;
 R_I2V[2][0] = cos(lon)*cos(lat);
 R_I2V[2][1] = sin(lon)*cos(lat);
 R_I2V[2][2] = sin(lat);
}

void QUAT(double quat[3][3],double q[4])
{
 double q1,q2,q3,q4;

 q1 = q[0];
 q2 = q[1];
 q3 = q[2];
 q4 = q[3];

 quat[0][0] = q1*q1+q2*q2-q3*q3-q4*q4;
 quat[0][1] = 2*(q2*q3-q1*q4);
 quat[0][2] = 2*(q2*q4+q1*q3);

248

 quat[1][0] = 2*(q2*q3+q1*q4);
 quat[1][1] = q1*q1-q2*q2+q3*q3-q4*q4;
 quat[1][2] = 2*(q3*q4-q1*q2);
 quat[2][0] = 2*(q2*q4-q1*q3);
 quat[2][1] = 2*(q3*q4+q1*q2);
 quat[2][2] = q1*q1-q2*q2-q3*q3+q4*q4;
}

void skewsymm(double SKEWMAT[3][3],double VEC[3])
{
 SKEWMAT[0][0] = 0;
 SKEWMAT[0][1] = -VEC[2];
 SKEWMAT[0][2] = VEC[1];
 SKEWMAT[1][0] = VEC[2];
 SKEWMAT[1][1] = 0;
 SKEWMAT[1][2] = -VEC[0];
 SKEWMAT[2][0] = -VEC[1];
 SKEWMAT[2][1] = VEC[0];
 SKEWMAT[2][2] = 0;
}

void DEQnav(double X_dot[6],double A[6][6],double X[6],double B[6][9],double U[9])
{
 double X1[6];
 double X2[6];
 int jj,kk;
 double temp;

 for (jj=0;jj<6;++jj)
 { X1[jj] = 0;
 X2[jj] = 0;
 }

/* State equation: X_dot = AX + BU */

 for (jj=0;jj<6;++jj)
 { for (kk=0;kk<6;++kk)
 { temp = A[jj][kk]*X[kk] ;
 X1[jj] = X1[jj] + temp ;
 }
 }

 for (jj=0;jj<6;++jj)
 { for (kk=0;kk<9;++kk)
 { temp = B[jj][kk]*U[kk] ;
 X2[jj] = X2[jj] + temp ;
 }
 }

249

 for (jj=0;jj<6;++jj)
 X_dot[jj] = X1[jj] + X2[jj] ;
}

void RK45nav(double X_plus[6],double dtime,double A[6][6],double X[6],double
B[6][9],double U[9])
{
 double tn = 0.0;
 double tn_temp;
 double K1[6];
 double K2[6];
 double K3[6];
 double K4[6];
 double Vx[6];
 double x_temp[6];
 int ii;

 DEQnav(Vx,A,X,B,U);
 for (ii=0;ii<6;++ii)
 K1[ii] = dtime*Vx[ii];

 tn_temp = tn + 0.5*dtime;
 for (ii=0;ii<6;++ii)
 x_temp[ii] = X[ii] + 0.5*K1[ii];

 DEQnav(Vx,A,x_temp,B,U);
 for (ii=0;ii<6;++ii)
 K2[ii] = dtime*Vx[ii];

 tn_temp = tn + 0.5*dtime;
 for (ii=0;ii<6;++ii)
 x_temp[ii] = X[ii] + 0.5*K2[ii];
 DEQnav(Vx,A,x_temp,B,U);
 for (ii=0;ii<6;++ii)
 K3[ii] = dtime*Vx[ii];

 tn_temp = tn + dtime;
 for (ii=0;ii<6;++ii)
 x_temp[ii] = X[ii] + K3[ii];
 DEQnav(Vx,A,x_temp,B,U);
 for (ii=0;ii<6;++ii)
 K4[ii] = dtime*Vx[ii];

 for (ii=0;ii<6;++ii)
 X_plus[ii] = X[ii] + (1.0/6.0)*(K1[ii]+2*K2[ii]+2*K3[ii]+K4[ii]);
}

void DEQquat(double q_dot[4], double q[4], double w[3])

250

{
 double w_xb, w_yb, w_zb;
 double Q1, Q2, Q3, Q4;

 w_xb = w[0];
 w_yb = w[1];
 w_zb = w[2];
 Q1 = q[0];
 Q2 = q[1];
 Q3 = q[2];
 Q4 = q[3];

/* Quaternion Propagation */

 q_dot[0] = -0.5*(Q2*w_xb + Q3*w_yb + Q4*w_zb);
 q_dot[1] = 0.5*(Q1*w_xb - Q4*w_yb + Q3*w_zb);
 q_dot[2] = 0.5*(Q4*w_xb + Q1*w_yb - Q2*w_zb);
 q_dot[3] = -0.5*(Q3*w_xb - Q2*w_yb - Q1*w_zb);
}

void RK45quat(double q_plus[4],double dtime,double q[4],double w[3])
{
 double tn = 0.0;
 double tn_temp;
 double K1[4];
 double K2[4];
 double K3[4];
 double K4[4];
 double Qx[4];
 double q_temp[4];
 int ii;

 DEQquat(Qx,q,w);
 for (ii=0;ii<4;++ii)
 K1[ii] = dtime*Qx[ii];
 tn_temp = tn + 0.5*dtime;
 for (ii=0;ii<4;++ii)
 q_temp[ii] = q[ii] + 0.5*K1[ii];
 DEQquat(Qx,q_temp,w);
 for (ii=0;ii<4;++ii)
 K2[ii] = dtime*Qx[ii];

 tn_temp = tn + 0.5*dtime;
 for (ii=0;ii<4;++ii)
 q_temp[ii] = q[ii] + 0.5*K2[ii];
 DEQquat(Qx,q_temp,w);
 for (ii=0;ii<4;++ii)
 K3[ii] = dtime*Qx[ii];

 tn_temp = tn + dtime;

251

 for (ii=0;ii<4;++ii)
 q_temp[ii] = q[ii] + K3[ii];
 DEQquat(Qx,q_temp,w);
 for (ii=0;ii<4;++ii)
 K4[ii] = dtime*Qx[ii];

 for (ii=0;ii<4;++ii)
 q_plus[ii] = q[ii] + (1.0/6.0)*(K1[ii]+2*K2[ii]+2*K3[ii]+K4[ii]);
}

/*--*/
/* library : imuLib.h */
/* Version : SBC-1.0 */
/*--*/
/* Date : 04/20/2001 original creation */
/* Last Update : 06/26/2001 */
/*--*/

#ifndef __imuLib_h
#define __imuLib_h
#define PRINT 1
#define TRUE 1
#define FALSE 0
#define row 3 /* maximum no of rows */
#define col 3 /* maximum no of columns */
#define s 8

 /* system parameters */
#define freq 12.5 /* data frequency in hertz */
#define dt 1/freq /* data time step */
#define pi 3.14159
#define D2R pi/180
#define R2D 180/pi

 /* navigation model parameters */
#define earth_radius 6378137.0 /* radius of earth in meters */
#define e2 0.00669437999013 /* square of the earth eccentricity */
#define WGS_grav_0 -9.7803267714 /* gravity 0 */
#define WGS_grav_1 -0.00193185138639 /* gravity 1 */
#define grav -9.801 /* gravitational constant + up direction*/
#define wie 7.292115e-5 /* earth rot rate, + ccw about north axis */

/* IMU status */
#define START_UP 0
#define POS_UPDATE_REQUEST 1
#define ALIGN_MODE 2
#define NAVIGATION 3
#define ZUPT_MODE 4
#define SHUTDOWN_COMPLETE 5

252

/* ALIGN status */
#define RESET 0
#define ALIGNED 1
#define COARSE_ALIGN 2
#define FINE_ALIGN 3
#define POS_UPDATE_IN_PROGRESS 4
#define ZUPT_IN_PROGRESS 5

/* ALIGN DATA status */
#define STATIC 1
#define MOVING 0

typedef struct {
 double latitude ;
 double longitude ;
 float altitude ;
 float vel_n ;
 float vel_e ;
 float vel_d ;
 float roll ;
 float pitch ;
 float azimuth ;
 double time_stamp ;
 int imu_status ;
 int align_status ;
 double align_time ;
 int good_data ;
 } GeoStruct ;

 typedef struct {
 char header[4] ;
 double omegaX ;
 double omegaY ;
 double omegaZ ;
 double accelX ;
 double accelY ;
 double accelZ ;
 } ImuStruct ;

 typedef struct {
 double roll ;
 double pitch ;
 double yaw ;
 } AttitudeStruct ;

/* Function Prototypes */
int getImuData(position_t *data, imuInfo_t *imuInfo, position_t kFilter, position_t novatel,
novatelInfo_t novatelInfo);
int receive(ImuStruct *ImuData);
void imuGetGeodeticData(GeoStruct *GeoData, imuInfo_t *Info, position_t kFilter, position_t
novatel, novatelInfo_t novatelInfo);

253

int startAlign (double Omega_X, double Omega_Y, double Omega_Z, double Accel_X, double
Accel_Y, double Accel_Z, double *rolli, double *pitchi, double *yawi, position_t novatel,
novatelInfo_t novatelInfo, imuInfo_t *iInfo);
int static_test(double omega_data_rms, double accel_data_rms, int DATA_MODE);
void coarseAlign(double Omega_X, double Omega_Y, double Omega_Z, double Acc_X, double
Acc_Y, double Acc_Z, double *roll, double *pitch, double *yaw, double refLat);
void getangle(double R_B2V[row][col], double *r, double *p, double *y);
void B2V(double r, double p, double y, double R_B2V[row][col]);
void matmult(double ans[row][col], double matrix1[row][col], int row1, int col1, double
matrix2[row][col], int row2, int col2);
void vecmult(double ans2[row], double matrix1[row][col], int row1, int col1, double
vector1[row], int row2);
void matrix_add(double ans[row][col], double matrix1[row][col], int row1, int col1, double
matrix2[row][col], int row2, int col2);
void matrix_subtract(double ans[row][col], double matrix1[row][col], int row1, int col1, double
matrix2[row][col], int row2, int col2);
void vector_add(double ans2[row], double vector1[row], int row1, double vector2[row], int
row2);
void vector_subtract(double ans2[row], double vector1[row], int row1, double vector2[row],int
row2);
void cross(double ans2[row], double vector1[row], double vector2[row]);
void transpose(double ans[row][col], double matrix[row][col]);
void identity_matrix(double result[row][col]);
void invert_matrix(double result[row][col], double matrix[row][col]);
void print_matrix(double ans[row][col]) ;
void print_vector(double ans2[row]) ;
void init_matrix(double matrix1[row][col]);
void init_vector(double vector[row]);
void C2V(double R_C2V[3][3],double P_n,double P_w,double P_u);
void E2I(double R_E2I[3][3],double dtime);
void I2V(double R_I2V[3][3],double lat,double lon);
void QUAT(double quat[3][3],double q[4]);
void skewsymm(double SKEWMAT[3][3],double VEC[3]);
void DEQquat(double q_dot[4], double q[4], double w[3]);
void RK45quat(double q_plus[4],double dtime,double q[4],double w[3]);
void DEQnav(double X_dot[6],double A[6][6],double X[6],double B[6][9],double U[9]);
void RK45nav(double X_plus[6],double dtime,double A[6][6],double X[6],double B[6][9],
double U[9]);
void navsol(double X_plus[6],double *lat_plus,double *lon_plus,double *H_plus, double
R_B2V_plus[3][3], double X[6], double lat, double lon, double H, double R_B2V[3][3], double
S_b[3], double w_b[3]);

#endif
#ifndef __filter_h
#define __filter_h

/* filterLib.h */

#define SQR(x) ((x) * (x))
#define QUEUE_SIZE 40

254

/* INU model parameters */
#define earth_radius 6378137.0 /* meters */
#define eccentricity_sqr 0.00669437999013
#define earth_rate 7.292115e-5 /* radians per second */
#define WGS_grav_0 9.7803267714 /* meters per sec sqr */
#define WGS_grav_1 0.00193185138639
#define inu_k1_const 0.0 /* 1.0e-4 baro damp not used*/
#define inu_k2_const 0.0 /* 1.0e-6 baro damp not used*/

/* IMU filter parameters */
#define number_time_store 30
#define number_states 9
#define number_meas 3
#define u_pos_meas 5.0e-1 /* meters */
#define u_dpos_meas 5.0e-1 /* meters */
#define e_pos_error 2.0e+1 /* meters */
#define e_alt_error 2.0e+1 /* meters */
#define e_vel_error 1.0e+0 /* meters per second */
#define e_tlt_error 1.0e-4 /* radians */
#define e_hdg_error 1.0e-3 /* radians */
#define grav_const 9.801 /* m/sq sec */
#define u_hori_grav 210.0 /* arc-sec */
#define u_vert_grav 1000.0 /* micro-g's */
#define u_accel_SF 300.0 /* parts per million */
#define u_accel_MA 200.0 /* arc-sec */
#define u_gyro_rw 0.125 /* degree per root hr */
#define skip_factor 8.0
#define hori_grav_error u_hori_grav * ars_to_rad * grav_const
#define accel_SF_error u_accel_SF / 1.0e+6
#define accel_MA_error u_accel_MA * ars_to_rad

/* INU filter states */
#define inu_lat_err 0
#define inu_long_err 1
#define inu_alt_err 2
#define inu_lat_rate_err 3
#define inu_long_rate_err 4
#define inu_alt_rate_err 5
#define inu_north_tilt 6
#define inu_east_tilt 7
#define inu_down_tilt 8

#define NORTH 0
#define EAST 1
#define DOWN 2

#define X 0
#define Y 1
#define Z 2

255

typedef struct inu_type {
 double time;
 double latitude;
 double longitude;
 double altitude;
 double roll;
 double pitch;
 double yaw;
 double vel_north;
 double vel_east;
 double vel_down;
 double roll_rate;
 double pitch_rate;
 double yaw_rate;
} INU_DATA, *INU_DATA_PTR;

typedef struct queue_struct {
 INU_DATA inu[QUEUE_SIZE] ;
 int ptr ;
} QUEUE, *QUEUE_PTR;

typedef struct gps_type {
 double time;
 double latitude;
 double longitude;
 double altitude;
} GPS_DATA, *GPS_DATA_PTR;

typedef struct nc_type {
 double time;
 double delta_update_time;
 double latitude;
 double longitude;
 double altitude;
 double roll;
 double pitch;
 double yaw;
 double vel_east;
 double vel_north;
 double vel_down;
 double rms;
} NC_DATA, *NC_DATA_PTR;

typedef struct _NCqueue {
 NC_DATA nc ;
 struct _NCqueue *next ;
} NCQUEUE, *NCQUEUE_PTR ;

/* function prototypes */
int INU_initialize (int *pos_update,INU_DATA inu, GPS_DATA gps, NC_DATA_PTR nc,
 QUEUE_PTR q, INU_DATA_PTR inu_past, GPS_DATA_PTR gps_past,

256

 double Phi[number_states][number_states],
 double F[number_states][number_states],
 double P[number_states][number_states], double Q[number_states],
 double x[number_states], double H[number_meas][number_states],
 double R[number_meas][number_meas]);

#endif

/*--*/
/* POS.cfg */
/* POS configuration file */
/* includes the sensor offsets to the control point */
/* and reference positions */
/*--*/
1
Reference latitude, longtitude, and altitude
UF
Honeywell HG1700AG11 IMU / Novatel RT-20 GPS Pos System

CIMAR LAB (MEB 131)
r 29.646412 -82.349352 12.36

Bandshell Base Point 1 (Original Ashtech)
r 29.6472687 -82.35443972 15.000000

Bandshell Base Point 2 (Novatel)
r 29.64723355 -82.3544477 14.965000

Tyndall
r 29.968349 -85.4729078 0.000000

-- Sensor offsets from Vehicle Coordinate System --

IMU offsets in meters (from CP, Control Point)
from MULE ashtech gps antenna (CP)
m -0.571000 0.140000 0.782000

MULE center rear axle
m 0.386000 0.140000 0.782000

ASV
m -2.019300 0.152400 0.000000

AMRADS
m -0.630 0.494 0.000000

GPS (Novatel) offsets in meters (from CP)
from MULE ashtech gps antenna (CP)
a 0.402000 0.000000 0.000000

257

MULE center rear axle
a 0.703000 0.000000 0.000000

ASV
a 0.000000 0.000000 -1.574800

AMRADS
a 0.0 0.0 -0.837

/*---*/
/* imu.cfg */
/* IMU configuration file */
/* includes the settings for sensor biases and testing parameters */
/* to aid in tuning the kalman filter */
/*--*/
1
Reference Attitude (Roll, Pitch, Yaw)

Use this to input reference attitude angles
from known source such as MAPS or compass
r (USE=1 to use ref & USE=0 to not use) (Ref Roll) (Ref Pitch) (Ref Yaw)
(all ref angles in degrees)
r 0 1.23 -2.66 -1.71

Input Alignment Parameters
c (Coarse Alignment Time in full seconds)
c 60

Input IMU Biases and Drifts
b (Bias X) (Bias Y) (Bias Z) (Drift X) (Drift Y) (Drift Z)
biases in m/sec^2, drifts in rad/sec
b 5.385437e-3 -5.674602e-3 -8.352242e-3 -1.37536e-5 6.959467e-6 1.038893e-5

WITHHOLD GPS
Input Time of Temporary Loss of GPS
g (Withhold GPS = 1 -> True, 0 -> False) (Time 1 Start) (Time 1 Stop)
(Time 2 Start) (Time 2 Stop) (Time 3 Start) (Time 3 Stop)
all times are referenced to mission time and are in seconds
g 0 60.0 65.0 120.0 130.0 180.0 200.0

Hardcode GPS Position
CIMAR LAB
h 1 29.646418 -82.349352 12.34
BANDSHELL
h 0 29.6472687 -82.35443972 15.00

258

/***/
/* Program: imudatacom.c */
/* This program takes raw data from the IMU, reads it in using DMA in MS-DOS */
/* through the Seamac ACB-104 serial communications card, performs error */
/* checks on the data, averages it from 100 Hz down to 12.5 Hz, and outputs it */
/* serially (RS232) in an IMU message format */
/***/
#include <bios.h>
#include <dos.h>
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include <string.h>
#include <conio.h>
#include <ctype.h>
#include "serial.c"
#include "serial.h"
#include "sstypes.h"
#include "acb_rtl.h"

#define pi 3.14159
#define N 100
#define R2D 180/pi
#define F2M 0.3048

#define ESC 27 /*keyboard character to terminate program*/
#define BUFFER_LENGTH 45
int main(void);
void cls(void);

BYTE RxBuffer[1024]="Empty buffer\0";
#define RX_BUFFER_LENGTH 100
LPBYTE fpBuffer;
unsigned char counter;
unsigned char counter2;

WORD wRxFrameCount = 0;
WORD wTxFrameCount = 0;
WORD wErrorCount = 0;
/***/
/***/
int main (void)
{ DWORD dwTemp = 0;
 BYTE c = 0;
 WORD wTemp = 0, i;
 int ii = 0;
 int jj = 0;
 int bufcount=0;
 int goodcount = 0;
 int totalcount = 0;

259

 int diff = 0;
 FILE *ofp;
 int startcounter;
 int time = 0;
 int starttime = 0;
 int endtime = 0;
 int timediff = 0;
 int minutes = 0;
 double seconds = 0.0;

 unsigned char buff[N] ;
 double fieldvar[24];
 double value[6];
 double d_theta[N];
 double old_dthetax = 0.0;
 double add_dthetax = 0.0;
 double total_thetax = 0.0;
 double total_thetaxp = 0.0;
 double omega_x = 0.0;
 double old_dthetay = 0.0;
 double add_dthetay = 0.0;
 double total_thetay = 0.0;
 double total_thetayp = 0.0;
 double omega_y = 0.0;
 double old_dthetaz = 0.0;
 double add_dthetaz = 0.0;
 double thetaz = 0.0;
 double ave_dthetaz = 0.0;
 double total_thetaz = 0.0;
 double total_thetazp = 0.0;
 double omega_z = 0.0;
 double d_vel[N];
 double old_dvelx = 0.0;
 double add_dvelx = 0.0;
 double accel_x = 0.0;
 double old_dvely = 0.0;
 double add_dvely = 0.0;
 double accel_y = 0.0;
 double old_dvelz = 0.0;
 double add_dvelz = 0.0;
 double accel_z = 0.0;
 double time_interval = 0.01; /* IMU message period, 1/100 Hz */
 int count = 0;
 double maxval = 4294967295.0; /* max value of data field */
 double midval = 2147483647.0; /* min value of data field */
 double dthetx = 0.0;
 double dthety = 0.0;
 double dthetz = 0.0;
 double dvelx = 0.0;
 double dvely = 0.0;
 double dvelz = 0.0;

260

 double vel_RMS = 0.0;

 /* Data Threshhold Values */
 double thresh_theta = 0.2; /* 0.2, threshhold value in delta radians */
 double thresh_vel = 4.0; /* 4.0, threshhold value in delta ft/sec */
 double diff_theta = 0.04; /* 0.04, differential threshhold value */
 double diff_vel = 1.0; /* 1.0, differential threshhold value */
 double RMS_Thresh = 0.02;

 int size = 42; /* IMU message byte size */
 int m = 0;
 int k = 0;
 int ave_data_rate = 8; /* 100 Hz / output data rate (12.5 Hz) */
 /* 8 --> 12.5 Hz */
 /* 10 --> 10 Hz */
 unsigned long testcount = 0;

 char numStr[100] ; /* string output for averaged IMU data */

/* Communications parameters */
 int port = COM2;
 int speed = 19200;
 int parity = NO_PARITY;
 int bits = 8;
 int stopbits = 1;

 if (SetSerial(port, speed, parity, bits, stopbits) != 0) {
 fprintf(stderr, "Serial Port setup error, COMM%d.\n", port) ;
 exit(99) ;
 }

 initserial() ;

 for (i=0; i<N; i++)
 {
 d_theta[i] = 0.0;
 d_vel[i] = 0.0;
 }
 system("cls");
 printf("\nHoneywell HG1700AG11 IMU Data Communications Program\n\n");
 printf("--\n");
 /* Verify driver is installed */
 if(ACBVerify())
 {
 printf("\nError: Driver not installed.\n");
 return(1);
 }

 printf("\nDOS DMA Driver present verified....\n");
 printf("\n\nOutputting IMU data at 12.5 Hz\n");
 printf("Type <Esc> to exit.\n");

261

 ACBStartDriver(); /* Init driver */

 startcounter = 0;

 do
 {
 if(_bios_keybrd(_KEYBRD_READY))
 {
 c = (unsigned char)(_bios_keybrd(_KEYBRD_READ));
 if(c != ESC)
 {
 } /* end if(c != ESC) */
 } /* end if(_bios_keybrd(_KEYBRD_READY)) */

 if (ACBCheckRxAvailable())
 { //printf("Got it!\n");
 fpBuffer = (LPBYTE)&RxBuffer;
 dwTemp = ACBGetFrame(fpBuffer,1024);

 for (i=0; i<size; i++)
 { buff[i] = *(fpBuffer+i);
 if (buff[i] == 0x0a)
 { if (buff[i+1] == 0x02)
 { count = 1;
 ++ m ;
 /* transfer desired datafields into field buffer */
 for (k=0; k<24; k++)
 fieldvar[k] = (unsigned long)buff[i+k+18];

 /* compute base 10 value */
 for (k=0; k<6; k++)
 value[k] = fieldvar[k*4] + fieldvar[k*4+1]*256 +
fieldvar[k*4+2]*256*256 + fieldvar[k*4+3]*256*256*256;
 /* Convert Delta Theta and Delta Velocity values */

 /* delta Theta X data */
 if (value[0] > midval)
 /* negative value */
 d_theta[m] = -1*(maxval-value[0])*(pow(2,-33));
 else
 /* positive value */
 d_theta[m] = value[0]*(pow(2,-33));
 /* Limit to threshhold value / countercheck for bad data */
 if (fabs(d_theta[m])>thresh_theta)
 d_theta[m] = old_dthetax;
 if (fabs(d_theta[m]-old_dthetax)>diff_theta)
 d_theta[m] = old_dthetax;
 dthetx = d_theta[m];

 /* delta Theta Y data */
 if (value[1] > midval)

262

 /* negative value */
 d_theta[m] = -1*(maxval-value[1])*(pow(2,-33));
 else
 /* positive value */
 d_theta[m] = value[1]*(pow(2,-33));
 /* Limit to threshhold value / countercheck for bad data */
 if (fabs(d_theta[m])>thresh_theta)
 d_theta[m] = old_dthetay;
 if (fabs(d_theta[m]-old_dthetay)>diff_theta)
 d_theta[m] = old_dthetay;
 dthety = d_theta[m];

 /* delta Theta Z data */
 if (value[2] > midval)
 /* negative value */
 d_theta[m] = -1*(maxval-value[2])*(pow(2,-33));
 else
 /* positive value */
 d_theta[m] = value[2]*(pow(2,-33));
 /* Limit to threshhold value / countercheck for bad data */
 if (fabs(d_theta[m])>thresh_theta)
 d_theta[m] = old_dthetaz;
 if (fabs(d_theta[m]-old_dthetaz)>diff_theta)
 d_theta[m] = old_dthetaz;
 dthetz = d_theta[m];

 /* delta Velocity X data */
 if (value[3] > midval)
 d_vel[m] = -1*(maxval-value[3])*(pow(2,-27));
 else
 d_vel[m] = value[3]*(pow(2,-27));
 if (fabs(d_vel[m])>thresh_vel)
 d_vel[m] = old_dvelx;
 if (fabs(d_vel[m]-old_dvelx)>diff_vel)
 d_vel[m] = old_dvelx;
 dvelx = d_vel[m];

 /* delta Velocity Y data */
 if (value[4] > midval)
 d_vel[m] = -1*(maxval-value[4])*(pow(2,-27));
 else
 d_vel[m] = value[4]*(pow(2,-27));
 if (fabs(d_vel[m])>thresh_vel)
 d_vel[m] = old_dvely;
 if (fabs(d_vel[m]-old_dvely)>diff_vel)
 d_vel[m] = old_dvely;
 dvely = d_vel[m];

 /* delta Velocity Z data */
 if (value[5] > midval)
 d_vel[m] = -1*(maxval-value[5])*(pow(2,-27));

263

 else
 d_vel[m] = value[5]*(pow(2,-27));
 if (fabs(d_vel[m])>thresh_vel)
 d_vel[m] = old_dvelz;
 if (fabs(d_vel[m]-old_dvelz)>diff_vel)
 d_vel[m] = old_dvelx;
 dvelz = d_vel[m];

 /* Error Check - Zero Value Data */
 vel_RMS = sqrt(dvelx*dvelx+dvely*dvely+dvelz*dvelz);
 if (vel_RMS < RMS_Thresh)
 { dvelx = old_dvelx;
 dvely = old_dvely;
 dvelz = old_dvelz;
 dthetx = old_dthetax;
 dthety = old_dthetay;
 dthetz = old_dthetaz;
 }

 old_dthetax = dthetx;
 add_dthetax = add_dthetax + old_dthetax;
 old_dthetay = dthety;
 add_dthetay = add_dthetay + old_dthetay;
 old_dthetaz = dthetz;
 add_dthetaz = add_dthetaz + old_dthetaz;
 old_dvelx = dvelx;
 add_dvelx = add_dvelx + old_dvelx;
 old_dvely = dvely;
 add_dvely = add_dvely + old_dvely;
 old_dvelz = dvelz;
 add_dvelz = add_dvelz + old_dvelz;

 if (m>(ave_data_rate -1))
 {
 /* Compute angular velocities from delta thetas */
 omega_x = add_dthetax / (ave_data_rate*time_interval);
 omega_y = add_dthetay / (ave_data_rate*time_interval);
 omega_z = add_dthetaz / (ave_data_rate*time_interval);
 accel_x = add_dvelx*F2M / (ave_data_rate*time_interval);
 accel_y = add_dvely*F2M / (ave_data_rate*time_interval);
 accel_z = add_dvelz*F2M / (ave_data_rate*time_interval);

 /* total delta thetas for current angle */
 total_thetax = total_thetaxp +
omega_x*R2D*time_interval*ave_data_rate;
 total_thetaxp = total_thetax;
 total_thetay = total_thetayp +
omega_y*R2D*time_interval*ave_data_rate;
 total_thetayp = total_thetay;

264

 total_thetaz = total_thetazp +
omega_z*R2D*time_interval*ave_data_rate;
 total_thetazp = total_thetaz;

 m = 0;
 add_dthetax = 0.0;
 add_dthetay = 0.0;
 add_dthetaz = 0.0;
 add_dvelx = 0.0;
 add_dvely = 0.0;
 add_dvelz = 0.0;
 }
 if ((testcount%(ave_data_rate))==0)
 {

sprintf(numStr,"$IMU,%.8f,%.8f,%.8f,%.6f,%.6f,%.6f\r\n",omega_x,omega_y,omega_z,accel_x,
accel_y,accel_z);
 SerialString(numStr) ;
 }
 ++ testcount;
 }
 }
 }
 }
}
 while(c != ESC); /* end do while*/
 printf("count = %d\n",testcount);
 ACBStopDriver();
 closeserial() ;

 return(0);
}

/***
 END OF FILE
 ***/

265

LIST OF REFERENCES

Arm93 Armstrong, D.G., “Position and Obstacle Detection Systems for an Outdoor,
 Land-Based, Autonomous Vehicle,” Master’s Thesis, University of Florida,
 1993.

Arm94 Armstrong, D.G., and Crane, C.D., “Sonar Based Obstacle Avoidance for
 Outdoor Autonomous Navigation,” Proceedings of the Florida Conference on

Recent Advances in Robotics, Gainesville, FL, April 1994. 137-140.

Ash93 Ashtech, Ashtech XII GPS Receiver Operating Manual, Ashtech Inc.,
 Sunnyvale CA, 1993.

Bie99 Biezad, D., Integrated Navigation and Guidance Systems. Reston, VA:
 American Institute of Aeronautics and Astronautics, Inc., 1999.

Bri70 Britting, K and Palsson, Thorgeir., “Self-Alignment Techniques for
 Strapdown Inertial Navigation Systems with Aircraft Applications,” Journal of
 Aircraft, Vol.7, No.4, 1970, 302-307.

Cha97 Chatfield, Averil B., Fundamentals of High Accuracy Inertial Navigation.
 Reston, VA: American Institute of Aeronautics and Astronautics, Inc., 1997.

Cla96 Clarke, B., GPS Aviation Applications. New York: McGraw-Hill, 1996.

Com95 Committee on the Future of the Global Positioning System, The Global

Positioning System, A Shared National Asset. Washington, D.C.: National
Academy Press, 1995.

Dip94 Di Prinzio, M.D. and Tolson, R.H. “Evaluation of GPS Position and Attitude
 Determination for Automated Rendezvous and Docking Missions,” Masters
 Thesis, Joint Institute for Advancement of Flight Sciences, L, George
 Washington University, 1994.

Dol Dolan, J., Hampshire, J., Khosla, P., Bhat, K., Diehl, C., and Oliver, S.,
 “Cyber ATV Platform,” The Institude of Complex Engineered Systems,
 Carnegie Mellon University, Pittsburgh, PA.

Hon00 Honeywell Sensor and Guidance Products. Honeywell HG1700 Inertial

Measurement Unit Product Description Manual. Minneapolis, MN, 2000.

266

Hon99 Honeywell Sensor and Guidance Products. Honeywell HG1700AG Inertial
Measurement Unit Reference Manual. Minneapolis, MN, 1999.

Hon92 Honeywell Military Avionics Division, H-726 Modular Azimuth Positioning

System. St. Petersburg, FL, 1992.

Hut97 Hutchinson, D., “Application of Global Positioning Systems to Autonomous
 Navigation,” Master’s Thesis, University of Florida, 1997.

Jar83 Jarvis, R.A., “Growing Polyhedral Obstacles for Planning Collision Free
 Paths,” The Australian Computer Journal, 15(3), 1983, 103-111.

Joc95 Jochem, T., Pomerleau, D., Kumar, B., and Armstrong, J., “PANS: A
 Portable Navigation Platform,” IEEE Symposium on Intelligent Vehicles,
 Detroit, MI, September 1995.

Joi00 Joint Architecture for Unmanned Ground Systems, “Reference Architecture,
 Volume II, Version 2.0,” Unmanned Ground Vehicles/Systems Joint
 Project Office AMSAM-DSA-UG, Alabama, September 2000.

Ken Kenny, P., Bidlack, C., Kluge, K., Lee, J., Huber, M., Durfee, E., and
 Weymouth, T., “Implementation of a Reactive Autonomous Navigation
 System on an Outdoor Mobile Robot,” Artificial Intelligence Laboratory,
 The University of Michigan, Ann Arbor, Michigan.

Law93 Lawrence, A., Modern Inertial Technology, Navigation, Guidance and

Control. New York: Springer-Verlag, 1993.

Log95 Logsdon, T., Understanding the NAVSTAR, GPS, GIS, and IVHS. New
 York: Van Nostrand Reinhold, 1995.

Mer96 Merhav, S., Aerospace Sensor Systems and Applications. New York:
 Springer-Verlag, 1996.

Nov01 Novatel Inc. Novatel RT-20 GPS Receiver Product Description Manual.
 Calgary, Canada, 2001.

Nov98 Novatel Inc. Novatel Beeline GPSCard User Manual. Calgary, Canada, 2001.

Nov97 NovAtel Inc. Novatel Millenium GPSCard Command Descriptions Manual.
 Calgary, Canada, 1997.

Oco O’Connor, M., Bell, T., Elkaim, G, and Parkinson, B., “Autonomous Steering
 of Farm Vehicles Using GPS,” Stanford University, California.

267

Ran94a Rankin, A.L. and Crane, C.D. III, “Off-Line Path Planning Using an A*
 Search Algorithm,” Proceedings of the Florida Conference on Recent

Advances in Robotics, Gainesville, FL. April 1994, 218-225.

Ran94b Rankin, A.L., Crane, C.D. III, and Armstrong, D.G., “Navigation of an
 Autonomous Robot Vehicle,” ASCE Conference on Robotics for Challenging

Environments, Albuquerque, February 1994, 44-51.

Rog96 Rogers, R.M., Wit, J.S., Crane, C.D., and Armstrong, D.G., “Integrated
 INU/DGPS for Autonomous Vehicle Navigation,” Proceedings of IEEE

PLANS 96, Atlanta, GA, April, 1996.

Shi92 Shin, D.H., Sanjiv, S., and Lee, J.J., “Explicit Path Tracking by Autonomous
 Vehicles,” Robotica, 10, (1992), 69-87.

Ste95 Stevens, M., Stevens, A. and Durrant-Whyte, H., “Robust Vehicle
 Navigation,” International Symposium on Experimental Roboptics, Stanford,
 CA, July 1995.

Tit97 Titterton, D.H., Weston, J.L., Strapdown Inertial Navigation Technology.
 UK: Peter Peregrinus Ltd., 1997.

Upa89 Upadhyay, T.N., Priovolos, G.J. Rhodenhamel, H., Autonomous Integrated

GPS/INS Navigation Experiment for OMV: Phase I Feasibility Study, NASA
Contractor Report 4267, Reading, MA: Mayflower Communications
Company, Inc., 1989.

Wit96 Wit, J., “Integrated Inertial Navigation System and Global Positioning System
 for the Navigation of an Autonomous Ground Vehicle,” Master’s Thesis,
 University of Florida, 1996.

268

BIOGRAPHICAL SKETCH

 The author, Rommel E. Mandapat, was born on June 26, 1968 in Quezon City,

Philippines. He received his bachelor’s degree in Mechanical Engineering from the

University of the Philippines on April of 1991. After which, he passed the Philippine

Professional Engineer Licensure Examination in Mechanical Engineering given on

November 1991.

 From January 1992 to December 1993, he worked for two engineering companies

in Japan. In Nippo Denshi, he was a mechanical designer of electronics enclosures and

vacuum systems. In Ohtsuka Polytech, he then took a role as automation engineer,

working with plastic and rubber automobile parts for Honda and Subaru.

 His work experience was further enhanced by serving as Head of Mechanical

Engineering for MK Screens, Inc. in Quezon City, Philippines from January 1994 to

December 1998. His main role was head design engineer for automation projects in

support of manufacturing. In MK, he also acted as Project Engineer for a Steel Mill

Transplant project in Seattle, Washington from March 1997 to July 1997.

 In December of 1998, he married Emalynn Santos in the Philippines. Soon after

they both moved to Gainesville, Florida, where he pursued his Master’s degree in

Mechanical Engineering at the University of Florida.

